config.yaml 4.5 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
fix  
xjqbest 已提交
15
# workspace
X
test  
xjqbest 已提交
16
workspace: "paddlerec.models.rank.dnn"
C
chengmo 已提交
17

X
fix  
xjqbest 已提交
18
# list of dataset
X
test  
xjqbest 已提交
19
dataset:
C
Chengmo 已提交
20
- name: dataloader_train # name of dataset to distinguish different datasets
X
test  
xjqbest 已提交
21
  batch_size: 2
X
fix  
xjqbest 已提交
22 23
  type: DataLoader # or QueueDataset 
  data_path: "{workspace}/data/sample_data/train"
X
test  
xjqbest 已提交
24 25
  sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
  dense_slots: "dense_var:13"
C
Chengmo 已提交
26 27 28 29 30 31
- name: dataset_train # name of dataset to distinguish different datasets
  batch_size: 2
  type: QueueDataset # or DataLoader 
  data_path: "{workspace}/data/sample_data/train"
  sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
  dense_slots: "dense_var:13"
X
fix  
xjqbest 已提交
32
- name: dataset_infer # name
X
fix  
xjqbest 已提交
33
  batch_size: 2
X
fix  
xjqbest 已提交
34
  type: DataLoader # or QueueDataset
X
fix  
xjqbest 已提交
35
  data_path: "{workspace}/data/sample_data/train"
X
fix  
xjqbest 已提交
36 37
  sparse_slots: "click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26"
  dense_slots: "dense_var:13"
T
tangwei 已提交
38

X
fix  
xjqbest 已提交
39
# hyper parameters of user-defined network
X
test  
xjqbest 已提交
40
hyper_parameters:
X
fix  
xjqbest 已提交
41
  # optimizer config
X
test  
xjqbest 已提交
42 43 44 45
  optimizer:
    class: Adam
    learning_rate: 0.001
    strategy: async
X
fix  
xjqbest 已提交
46
  # user-defined <key, value> pairs
X
test  
xjqbest 已提交
47 48 49 50 51
  sparse_inputs_slots: 27
  sparse_feature_number: 1000001
  sparse_feature_dim: 9
  dense_input_dim: 13
  fc_sizes: [512, 256, 128, 32]
T
tangwei 已提交
52

X
fix  
xjqbest 已提交
53
# select runner by name
C
Chengmo 已提交
54
mode: single_cpu_train
X
fix  
xjqbest 已提交
55 56
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
X
fix  
xjqbest 已提交
57
runner:
C
Chengmo 已提交
58 59
- name: single_cpu_train
  class: train
X
fix  
xjqbest 已提交
60
  # num of epochs
C
Chengmo 已提交
61
  epochs: 4
X
fix  
xjqbest 已提交
62 63
  # device to run training or infer
  device: cpu
X
fix  
xjqbest 已提交
64 65 66 67
  save_checkpoint_interval: 2 # save model interval of epochs
  save_inference_interval: 4 # save inference
  save_checkpoint_path: "increment" # save checkpoint path
  save_inference_path: "inference" # save inference path
X
fix  
xjqbest 已提交
68 69 70
  save_inference_feed_varnames: [] # feed vars of save inference
  save_inference_fetch_varnames: [] # fetch vars of save inference
  init_model_path: "" # load model path
X
fix  
xjqbest 已提交
71
  print_interval: 10
C
Chengmo 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
- name: single_gpu_train
  class: train
  # num of epochs
  epochs: 4
  # device to run training or infer
  device: gpu
  selected_gpus: "2"
  save_checkpoint_interval: 2 # save model interval of epochs
  save_inference_interval: 4 # save inference
  save_checkpoint_path: "increment" # save checkpoint path
  save_inference_path: "inference" # save inference path
  save_inference_feed_varnames: [] # feed vars of save inference
  save_inference_fetch_varnames: [] # fetch vars of save inference
  init_model_path: "" # load model path
  print_interval: 10
- name: single_cpu_infer
  class: infer
X
fix  
xjqbest 已提交
89
  # num of epochs
C
Chengmo 已提交
90
  epochs: 1
X
fix  
xjqbest 已提交
91 92
  # device to run training or infer
  device: cpu
X
fix  
xjqbest 已提交
93
  init_model_path: "increment/0" # load model path
C
Chengmo 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
- name: local_cluster_cpu_ps_train
  class: local_cluster
  epochs: 4
  device: cpu
  save_checkpoint_interval: 2 # save model interval of epochs
  save_inference_interval: 4 # save inference
  save_checkpoint_path: "increment" # save checkpoint path
  save_inference_path: "inference" # save inference path
  save_inference_feed_varnames: [] # feed vars of save inference
  save_inference_fetch_varnames: [] # fetch vars of save inference
  init_model_path: "" # load model path
  print_interval: 1
- name: multi_gpu_train
  class: train
  epochs: 4
  device: gpu
  selected_gpus: "2,3"
  save_checkpoint_interval: 2 # save model interval of epochs
  save_inference_interval: 4 # save inference
  save_checkpoint_path: "increment" # save checkpoint path
  save_inference_path: "inference" # save inference path
  save_inference_feed_varnames: [] # feed vars of save inference
  save_inference_fetch_varnames: [] # fetch vars of save inference
  init_model_path: "" # load model path
  print_interval: 10
X
test  
xjqbest 已提交
119

X
fix  
xjqbest 已提交
120
# runner will run all the phase in each epoch
X
fix  
xjqbest 已提交
121
phase:
X
fix  
xjqbest 已提交
122 123
- name: phase1
  model: "{workspace}/model.py" # user-defined model
C
Chengmo 已提交
124
  dataset_name: dataloader_train # select dataset by name
X
fix  
xjqbest 已提交
125 126 127 128 129
  thread_num: 1
#- name: phase2
#  model: "{workspace}/model.py" # user-defined model
#  dataset_name: dataset_infer # select dataset by name
#  thread_num: 1