model.py 3.8 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import paddle.fluid as fluid

from paddlerec.core.utils import envs
C
Chengmo 已提交
20
from paddlerec.core.model import ModelBase
M
malin10 已提交
21 22 23 24 25 26 27


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
C
Chengmo 已提交
28 29
        self.is_distributed = True if envs.get_fleet_mode().upper(
        ) == "PSLIB" else False
M
malin10 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number")
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim")
        self.learning_rate = envs.get_global_env(
            "hyper_parameters.optimizer.learning_rate")
        self.hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes")

    def net(self, input, is_infer=False):
        self.user_sparse_inputs = self._sparse_data_var[2:6]
        self.mov_sparse_inputs = self._sparse_data_var[6:9]

        self.label_input = self._sparse_data_var[-1]

        def fc(input):
            fcs = [input]
            for size in self.hidden_layers:
                output = fluid.layers.fc(
                    input=fcs[-1],
                    size=size,
                    act='relu',
                    param_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Normal(
                            scale=1.0 / math.sqrt(fcs[-1].shape[1]))))
                fcs.append(output)
            return fcs[-1]

        def embedding_layer(input):
            emb = fluid.layers.embedding(
                input=input,
                is_sparse=True,
                is_distributed=self.is_distributed,
                size=[self.sparse_feature_number, self.sparse_feature_dim],
                param_attr=fluid.ParamAttr(
                    name="emb", initializer=fluid.initializer.Uniform()), )
            emb_sum = fluid.layers.sequence_pool(input=emb, pool_type='sum')
            return emb_sum

        user_sparse_embed_seq = list(
            map(embedding_layer, self.user_sparse_inputs))
        mov_sparse_embed_seq = list(
            map(embedding_layer, self.mov_sparse_inputs))
        concated_user = fluid.layers.concat(user_sparse_embed_seq, axis=1)
        concated_mov = fluid.layers.concat(mov_sparse_embed_seq, axis=1)

        usr_combined_features = fc(concated_user)
        mov_combined_features = fc(concated_mov)

        sim = fluid.layers.cos_sim(
            X=usr_combined_features, Y=mov_combined_features)
        predict = fluid.layers.scale(sim, scale=5)
        self.predict = predict

        if is_infer:
            self._infer_results["uid"] = self._sparse_data_var[2]
            self._infer_results["movieid"] = self._sparse_data_var[6]
            self._infer_results["label"] = self._sparse_data_var[-1]
            self._infer_results["predict"] = self.predict
            return

        cost = fluid.layers.square_error_cost(
            self.predict,
            fluid.layers.cast(
                x=self.label_input, dtype='float32'))
        avg_cost = fluid.layers.reduce_mean(cost)
        self._cost = avg_cost
        self._metrics["LOSS"] = avg_cost

    def optimizer(self):
        optimizer = fluid.optimizer.Adam(self.learning_rate, lazy_mode=True)
        return optimizer