startup.py 4.1 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import warnings

import paddle.fluid as fluid
from paddlerec.core.utils import envs

__all__ = ["StartupBase", "SingleStartup", "PSStartup", "CollectiveStartup"]


class StartupBase(object):
    """R
    """

    def __init__(self, context):
        pass

    def startup(self, context):
        pass

    def load(self, context, is_fleet=False, main_program=None):
        dirname = envs.get_global_env(
            "runner." + context["runner_name"] + ".init_model_path", None)
        if dirname is None or dirname == "":
            return
        print("going to load ", dirname)
C
chengmo 已提交
41 42 43
        fluid.io.load_persistables(
            context["exe"], dirname, main_program=main_program)
        print("load from {} success".format(dirname))
C
Chengmo 已提交
44 45 46 47 48 49 50 51 52 53 54


class SingleStartup(StartupBase):
    """R
    """

    def __init__(self, context):
        print("Running SingleStartup.")
        pass

    def startup(self, context):
T
tangwei 已提交
55
        for model_dict in context["phases"]:
C
Chengmo 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    context["exe"].run(startup_prog)
                    self.load(context, main_program=train_prog)
        context["status"] = "train_pass"


class PSStartup(StartupBase):
    def __init__(self, context):
        print("Running PSStartup.")
        pass

    def startup(self, context):
T
tangwei 已提交
74
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):

            train_prog = context["model"][model_dict["name"]]["main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                context["exe"].run(startup_prog)
        context["status"] = "train_pass"


class CollectiveStartup(StartupBase):
    def __init__(self, context):
        print("Running CollectiveStartup.")
        pass

    def startup(self, context):
T
tangwei 已提交
91
        model_dict = context["env"]["phase"][0]
C
Chengmo 已提交
92 93 94 95 96 97 98
        with fluid.scope_guard(context["model"][model_dict["name"]]["scope"]):
            train_prog = context["model"][model_dict["name"]][
                "default_main_program"]
            startup_prog = context["model"][model_dict["name"]][
                "startup_program"]
            with fluid.program_guard(train_prog, startup_prog):
                context["exe"].run(startup_prog)
C
chengmo 已提交
99
                self.load(context, main_program=train_prog)
C
Chengmo 已提交
100
        context["status"] = "train_pass"
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118


class SingleInferStartup(StartupBase):
    def __init__(self, context):
        print("Running SingleInferStartup.")
        pass

    def startup(self, context):
        for model_dict in context["phases"]:
            with fluid.scope_guard(context["model"][model_dict["name"]][
                    "scope"]):
                train_prog = context["model"][model_dict["name"]][
                    "main_program"]
                startup_prog = context["model"][model_dict["name"]][
                    "startup_program"]
                with fluid.program_guard(train_prog, startup_prog):
                    context["exe"].run(startup_prog)
        context["status"] = "train_pass"