model.py 5.0 KB
Newer Older
Z
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15
import numpy as np
Z
zhangwenhui03 已提交
16 17
import paddle.fluid as fluid

18 19
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
Z
zhangwenhui03 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def fc(self,tag, data, out_dim, active='prelu'):
        
        init_stddev = 1.0
        scales = 1.0  / np.sqrt(data.shape[1])
        
        p_attr = fluid.param_attr.ParamAttr(name='%s_weight' % tag,
                    initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=init_stddev * scales))
                    
        b_attr = fluid.ParamAttr(name='%s_bias' % tag, initializer=fluid.initializer.Constant(0.1))
        
        out = fluid.layers.fc(input=data,
                            size=out_dim,
                            act=active,
                            param_attr=p_attr, 
                            bias_attr =b_attr,
                            name=tag)
        return out
        
    def input_data(self):
        sparse_input_ids = [
            fluid.data(name="field_" + str(i), shape=[-1, 1], dtype="int64", lod_level=1) for i in range(0,23)
        ]
        label_ctr = fluid.data(name="ctr", shape=[-1, 1], dtype="int64")
        label_cvr = fluid.data(name="cvr", shape=[-1, 1], dtype="int64")
        inputs = sparse_input_ids + [label_ctr] + [label_cvr]
        self._data_var.extend(inputs)
        
        return inputs
    
Z
zhangwenhui03 已提交
55
    def net(self, inputs, is_infer=False):
Z
zhangwenhui03 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        
        vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None, self._namespace)
        embed_size = envs.get_global_env("hyper_parameters.embed_size", None, self._namespace)
        emb = []
        for data in inputs[0:-2]:
            feat_emb = fluid.embedding(input=data,
                                size=[vocab_size, embed_size],
                                param_attr=fluid.ParamAttr(name='dis_emb',
                                                            learning_rate=5,
                                                            initializer=fluid.initializer.Xavier(fan_in=embed_size,fan_out=embed_size)
                                                            ),
                                is_sparse=True)
            field_emb = fluid.layers.sequence_pool(input=feat_emb,pool_type='sum')
            emb.append(field_emb)
        concat_emb = fluid.layers.concat(emb, axis=1)
        
        # ctr
        active = 'relu'
        ctr_fc1 = self.fc('ctr_fc1', concat_emb, 200, active)
        ctr_fc2 = self.fc('ctr_fc2', ctr_fc1, 80, active)
        ctr_out = self.fc('ctr_out', ctr_fc2, 2, 'softmax')
        
        # cvr
        cvr_fc1 = self.fc('cvr_fc1', concat_emb, 200, active)
        cvr_fc2 = self.fc('cvr_fc2', cvr_fc1, 80, active)
        cvr_out = self.fc('cvr_out', cvr_fc2, 2,'softmax')
    
        ctr_clk = inputs[-2]
        ctcvr_buy = inputs[-1]
        
        ctr_prop_one = fluid.layers.slice(ctr_out, axes=[1], starts=[1], ends=[2])
        cvr_prop_one = fluid.layers.slice(cvr_out, axes=[1], starts=[1], ends=[2])
        
        ctcvr_prop_one = fluid.layers.elementwise_mul(ctr_prop_one, cvr_prop_one)
        ctcvr_prop = fluid.layers.concat(input=[1-ctcvr_prop_one,ctcvr_prop_one], axis = 1)
Z
zhangwenhui03 已提交
91 92 93 94 95 96 97 98 99

        auc_ctr, batch_auc_ctr, auc_states_ctr = fluid.layers.auc(input=ctr_out, label=ctr_clk)
        auc_ctcvr, batch_auc_ctcvr, auc_states_ctcvr = fluid.layers.auc(input=ctcvr_prop, label=ctcvr_buy)

        if is_infer:
            self._infer_results["AUC_ctr"] = auc_ctr
            self._infer_results["AUC_ctcvr"] = auc_ctcvr
            return

Z
zhangwenhui03 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    
        loss_ctr = fluid.layers.cross_entropy(input=ctr_out, label=ctr_clk)
        loss_ctcvr = fluid.layers.cross_entropy(input=ctcvr_prop, label=ctcvr_buy)
        cost = loss_ctr + loss_ctcvr
        avg_cost = fluid.layers.mean(cost)

    
        self._cost = avg_cost
        self._metrics["AUC_ctr"] = auc_ctr
        self._metrics["BATCH_AUC_ctr"] = batch_auc_ctr
        self._metrics["AUC_ctcvr"] = auc_ctcvr
        self._metrics["BATCH_AUC_ctcvr"] = batch_auc_ctcvr


    def train_net(self):
        input_data = self.input_data()
        self.net(input_data)


    def infer_net(self):
Z
zhangwenhui03 已提交
120 121 122 123
        self._infer_data_var = self.input_data()
        self._infer_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._infer_data_var, capacity=64, use_double_buffer=False, iterable=False)
        self.net(self._infer_data_var, is_infer=True)