ctr_coding_trainer.py 4.8 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

T
tangwei 已提交
15 16
import os

T
tangwei 已提交
17
import numpy as np
T
tangwei 已提交
18 19 20 21
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
from paddle.fluid.incubate.fleet.base.role_maker import MPISymetricRoleMaker

22 23
from paddlerec.core.utils import envs
from paddlerec.core.trainer import Trainer
T
tangwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class CtrPaddleTrainer(Trainer):
    """R
    """

    def __init__(self, config):
        """R
        """
        Trainer.__init__(self, config)

        self.global_config = config
        self._metrics = {}
        self.processor_register()

    def processor_register(self):
        role = MPISymetricRoleMaker()
        fleet.init(role)

        if fleet.is_server():
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('train_pass', self.train)
            self.regist_context_processor('terminal_pass', self.terminal)

    def _get_dataset(self):
        namespace = "train.reader"

        inputs = self.model.get_inputs()
        threads = envs.get_global_env("train.threads", None)
        batch_size = envs.get_global_env("batch_size", None, namespace)
        reader_class = envs.get_global_env("class", None, namespace)
        abs_dir = os.path.dirname(os.path.abspath(__file__))
T
tangwei 已提交
61
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')
T
tangwei 已提交
62
        pipe_cmd = "python {} {} {} {}".format(reader, reader_class, "TRAIN", self._config_yaml)
T
tangwei 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        train_data_path = envs.get_global_env("train_data_path", None, namespace)

        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(inputs)
        dataset.set_pipe_command(pipe_cmd)
        dataset.set_batch_size(batch_size)
        dataset.set_thread(threads)
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]

        dataset.set_filelist(file_list)
        return dataset

    def instance(self, context):
        models = envs.get_global_env("train.model.models")
T
tangwei 已提交
80
        model_class = envs.lazy_instance_by_fliename(models, "Model")
T
tangwei 已提交
81 82 83 84 85 86 87 88 89 90
        self.model = model_class(None)
        context['status'] = 'init_pass'

    def init(self, context):
        """R
        """
        self.model.train_net()
        optimizer = self.model.optimizer()

        optimizer = fleet.distributed_optimizer(optimizer, strategy={"use_cvm": False})
T
tangwei 已提交
91
        optimizer.minimize(self.model.get_avg_cost())
T
tangwei 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.run_server()
T
tangwei 已提交
108
        fleet.stop_worker()
T
tangwei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        context['is_exit'] = True

    def train(self, context):
        self._exe.run(fluid.default_startup_program())
        fleet.init_worker()

        dataset = self._get_dataset()

        shuf = np.array([fleet.worker_index()])
        gs = shuf * 0
        fleet._role_maker._node_type_comm.Allreduce(shuf, gs)

        print("trainer id: {}, trainers: {}, gs: {}".format(fleet.worker_index(), fleet.worker_num(), gs))

        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)

        context['status'] = 'terminal_pass'
        fleet.stop_worker()

    def terminal(self, context):
        print("terminal ended.")
        context['is_exit'] = True