model.py 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
import paddle.fluid as fluid
import math

from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def deepfm_net(self):
        init_value_ = 0.1
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
        
        # ------------------------- network input --------------------------
        
        num_field = envs.get_global_env("hyper_parameters.num_field", None, self._namespace)
        raw_feat_idx = fluid.data(name='feat_idx', shape=[None, num_field], dtype='int64') # None * num_field(defalut:39)
        raw_feat_value = fluid.data(name='feat_value', shape=[None, num_field], dtype='float32') # None * num_field
        self.label = fluid.data(name='label', shape=[None, 1], dtype='float32')  # None * 1
        feat_idx = fluid.layers.reshape(raw_feat_idx,[-1, 1])  # (None * num_field) * 1
        feat_value = fluid.layers.reshape(raw_feat_value, [-1, num_field, 1])  # None * num_field * 1
        
        # ------------------------- set _data_var --------------------------
        
        self._data_var.append(raw_feat_idx)
        self._data_var.append(raw_feat_value)
        self._data_var.append(self.label)
        if self._platform != "LINUX":
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var, capacity=64, use_double_buffer=False, iterable=False)
        
        #------------------------- first order term --------------------------

        reg = envs.get_global_env("hyper_parameters.reg", 1e-4, self._namespace)
        first_weights_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
                regularizer=fluid.regularizer.L1DecayRegularizer(reg)))
        first_weights = fluid.layers.reshape(
            first_weights_re, shape=[-1, num_field, 1])  # None * num_field * 1
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value), 1)

        #------------------------- second order term --------------------------

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_ / math.sqrt(float(sparse_feature_dim)))))
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, num_field,
                sparse_feature_dim])  # None * num_field * embedding_size
        feat_embeddings = feat_embeddings * feat_value  # None * num_field * embedding_size
        
        # sum_square part
        summed_features_emb = fluid.layers.reduce_sum(feat_embeddings,
                                                    1)  # None * embedding_size
        summed_features_emb_square = fluid.layers.square(
            summed_features_emb)  # None * embedding_size

        # square_sum part
        squared_features_emb = fluid.layers.square(
            feat_embeddings)  # None * num_field * embedding_size
        squared_sum_features_emb = fluid.layers.reduce_sum(
            squared_features_emb, 1)  # None * embedding_size

        y_second_order = 0.5 * fluid.layers.reduce_sum(
            summed_features_emb_square - squared_sum_features_emb, 1,
            keep_dim=True)  # None * 1


        #------------------------- DNN --------------------------

        layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes", None, self._namespace)
        act = envs.get_global_env("hyper_parameters.act", None, self._namespace)
        y_dnn = fluid.layers.reshape(feat_embeddings,
                                    [-1, num_field * sparse_feature_dim])
        for s in layer_sizes:
            y_dnn = fluid.layers.fc(
                input=y_dnn,
                size=s,
                act=act,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_ / math.sqrt(float(10)))),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)))
        y_dnn = fluid.layers.fc(
            input=y_dnn,
            size=1,
            act=None,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)))
        
        #------------------------- DeepFM --------------------------

        self.predict = fluid.layers.sigmoid(y_first_order + y_second_order + y_dnn)
    
    def train_net(self):
        self.deepfm_net()
        
        #------------------------- Cost(logloss) --------------------------

        cost = fluid.layers.log_loss(input=self.predict, label=self.label)
        avg_cost = fluid.layers.reduce_sum(cost)
        
        self._cost = avg_cost

        #------------------------- Metric(Auc) --------------------------
        
        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
                                                            label=label_int,
                                                            slide_steps=0)
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer

    def infer_net(self, parameter_list):
        self.deepfm_net()