single_train.py 5.6 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import os
import time
import numpy as np
import logging
import paddle.fluid as fluid

from .trainer import Trainer
from ..utils import envs

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def need_save(epoch_id, epoch_interval, is_last=False):
    if is_last:
        return True

    return epoch_id % epoch_interval == 0


class SingleTrainer(Trainer):

    def __init__(self, config=None, yaml_file=None):
        Trainer.__init__(self, config, yaml_file)

        self.exe = fluid.Executor(fluid.CPUPlace())

        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('train_pass', self.train)
        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        model_package = __import__(envs.get_global_env("train.model.models"))
        train_model = getattr(model_package, 'Train')

        self.model = train_model()

        context['status'] = 'init_pass'

    def init(self, context):
        self.model.input()
        self.model.net()
        self.metrics = self.model.metrics()
T
tangwei 已提交
66 67 68 69
        loss = self.model.avg_loss()

        optimizer = self.model.get_optimizer()
        optimizer.minimize(loss)
T
tangwei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        # run startup program at once
        self.exe.run(fluid.default_startup_program())

        context['status'] = 'train_pass'

    def train(self, context):
        print("Need to be implement")
        context['is_exit'] = True

    def infer(self, context):
        print("Need to be implement")
        context['is_exit'] = True

    def terminal(self, context):
        context['is_exit'] = True


class SingleTrainerWithDataloader(SingleTrainer):
    pass


class SingleTrainerWithDataset(SingleTrainer):
    def _get_dataset(self, inputs, threads, batch_size, pipe_command, train_files_path):
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(inputs)
        dataset.set_pipe_command(pipe_command)
        dataset.set_batch_size(batch_size)
        dataset.set_thread(threads)
        file_list = [
            os.path.join(train_files_path, x)
            for x in os.listdir(train_files_path)
        ]

        dataset.set_filelist(file_list)
        return dataset

    def save(self, epoch_id):
        def save_inference_model():
            is_save_inference = envs.get_global_env("save.inference", False)
            if not is_save_inference:
                return

            save_interval = envs.get_global_env("save.inference.epoch_interval", 1)
            if not need_save(epoch_id, save_interval, False):
                return

            feed_varnames = envs.get_global_env("save.inference.feed_varnames", None)
            fetch_varnames = envs.get_global_env("save.inference.fetch_varnames", None)
            fetch_vars = [fluid.global_scope().vars[varname] for varname in fetch_varnames]
            dirname = envs.get_global_env("save.inference.dirname", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))
            fluid.io.save_inference_model(dirname, feed_varnames, fetch_vars, self.exe)

        def save_persistables():
            is_save_increment = envs.get_global_env("save.increment", False)
            if not is_save_increment:
                return

            save_interval = envs.get_global_env("save.increment.epoch_interval", 1)
            if not need_save(epoch_id, save_interval, False):
                return

            dirname = envs.get_global_env("save.inference.dirname", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))
            fluid.io.save_persistables(self.exe, dirname)

        is_save = envs.get_global_env("save", False)

        if not is_save:
            return

        save_persistables()
        save_inference_model()

    def train(self, context):
        inputs = self.model.input_vars()
        threads = envs.get_global_env("threads")
        batch_size = envs.get_global_env("batch_size")
        pipe_command = envs.get_global_env("pipe_command")
        train_data_path = envs.get_global_env("train_data_path")

        dataset = self._get_dataset(inputs, threads, batch_size, pipe_command, train_data_path)

        epochs = envs.get_global_env("epochs")

        for i in range(epochs):
            self.exe.train_from_dataset(program=fluid.default_main_program(),
                                        dataset=dataset,
                                        fetch_list=[self.metrics],
                                        fetch_info=["epoch {} auc ".format(i)],
                                        print_period=100)
        context['status'] = 'infer_pass'


def infer(self, context):
    context['status'] = 'terminal_pass'