infer.py 6.2 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import sys
import time
import math
import numpy as np
import six
import paddle.fluid as fluid
import paddle
import utils
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf-8')


def parse_args():
    parser = argparse.ArgumentParser("PaddlePaddle Word2vec infer example")
    parser.add_argument(
        '--dict_path',
        type=str,
        default='./data/data_c/1-billion_dict_word_to_id_',
        help="The path of dic")
    parser.add_argument(
        '--test_dir', type=str, default='test_data', help='test file address')
    parser.add_argument(
        '--print_step', type=int, default='500000', help='print step')
    parser.add_argument(
        '--start_index', type=int, default='0', help='start index')
    parser.add_argument(
        '--last_index', type=int, default='100', help='last index')
    parser.add_argument(
        '--model_dir', type=str, default='model', help='model dir')
    parser.add_argument(
        '--use_cuda', type=int, default='0', help='whether use cuda')
    parser.add_argument(
        '--batch_size', type=int, default='5', help='batch_size')
    parser.add_argument(
        '--emb_size', type=int, default='64', help='batch_size')
    args = parser.parse_args()
    return args


def infer_network(vocab_size, emb_size):
    analogy_a = fluid.data(name="analogy_a", shape=[None], dtype='int64')
    analogy_b = fluid.data(name="analogy_b", shape=[None], dtype='int64')
    analogy_c = fluid.data(name="analogy_c", shape=[None], dtype='int64')
    all_label = fluid.data(name="all_label", shape=[vocab_size], dtype='int64')
    emb_all_label = fluid.embedding(
        input=all_label, size=[vocab_size, emb_size], param_attr="emb")

    emb_a = fluid.embedding(
        input=analogy_a, size=[vocab_size, emb_size], param_attr="emb")
    emb_b = fluid.embedding(
        input=analogy_b, size=[vocab_size, emb_size], param_attr="emb")
    emb_c = fluid.embedding(
        input=analogy_c, size=[vocab_size, emb_size], param_attr="emb")
    target = fluid.layers.elementwise_add(
        fluid.layers.elementwise_sub(emb_b, emb_a), emb_c)
    emb_all_label_l2 = fluid.layers.l2_normalize(x=emb_all_label, axis=1)
    dist = fluid.layers.matmul(x=target, y=emb_all_label_l2, transpose_y=True)
    values, pred_idx = fluid.layers.topk(input=dist, k=4)
    return values, pred_idx


def infer_epoch(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
    with fluid.scope_guard(fluid.Scope()):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                copy_program = main_program.clone()
                model_path = model_dir + "/" + str(epoch)
                fluid.io.load_persistables(
                    exe, model_path, main_program=copy_program)
                accum_num = 0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    b_size = len([dat[0] for dat in data])
                    wa = np.array([dat[0] for dat in data]).astype(
                        "int64").reshape(b_size)
                    wb = np.array([dat[1] for dat in data]).astype(
                        "int64").reshape(b_size)
                    wc = np.array([dat[2] for dat in data]).astype(
                        "int64").reshape(b_size)

                    label = [dat[3] for dat in data]
                    input_word = [dat[4] for dat in data]
                    para = exe.run(copy_program,
                                   feed={
                                       "analogy_a": wa,
                                       "analogy_b": wb,
                                       "analogy_c": wc,
                                       "all_label": np.arange(vocab_size)
                                       .reshape(vocab_size).astype("int64"),
                                   },
                                   fetch_list=[pred.name, values],
                                   return_numpy=False)
                    pre = np.array(para[0])
                    val = np.array(para[1])
                    for ii in range(len(label)):
                        top4 = pre[ii]
                        accum_num_sum += 1
                        for idx in top4:
                            if int(idx) in input_word[ii]:
                                continue
                            if int(idx) == int(label[ii][0]):
                                accum_num += 1
                            break
                    if step_id % 1 == 0:
                        print("step:%d %d " % (step_id, accum_num))

                print("epoch:%d \t acc:%.3f " %
                      (epoch, 1.0 * accum_num / accum_num_sum))


if __name__ == "__main__":
    args = parse_args()
    start_index = args.start_index
    last_index = args.last_index
    test_dir = args.test_dir
    model_dir = args.model_dir
    batch_size = args.batch_size
    dict_path = args.dict_path
    use_cuda = True if args.use_cuda else False
    print("start index: ", start_index, " last_index:", last_index)
    vocab_size, test_reader, id2word = utils.prepare_data(
        test_dir, dict_path, batch_size=batch_size)
    print("vocab_size:", vocab_size)
    infer_epoch(
        args,
        vocab_size,
        test_reader=test_reader,
        use_cuda=use_cuda,
        i2w=id2word)