malloc_test.cu 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda.h>
#include <cuda_runtime.h>
#include <thread>  // NOLINT
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace memory {

const int NUM_STREAMS = 8;
const int N = 2;
const float DELTA = 1e-1;

using CudaDevCtxVec = std::vector<std::unique_ptr<platform::CUDADeviceContext>>;

__global__ void kernel(float *x, int n) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < n; i += blockDim.x * gridDim.x) {
    x[i] = 3.14159 * i;
  }
}

void CheckKernelOutput(float *x, int n) {
  auto host_x = std::unique_ptr<float[]>(new float[n]);
  for (int i = 0; i < n; ++i) {
    EXPECT_TRUE(cudaSuccess == cudaMemcpy(host_x.get(), x, n * sizeof(float),
                                          cudaMemcpyDeviceToHost));
    EXPECT_GE(host_x[i] + DELTA, 3.14159f * i);
    EXPECT_LE(host_x[i] - DELTA, 3.14159f * i);
  }
}

void MultiStreamCompute(float **data, float **second_data,
                        const platform::CUDADeviceContext &ctx) {
  // multi-streams
  AllocationPtr allocation_ptr = Alloc(ctx, N * sizeof(float));
  EXPECT_GE(allocation_ptr->size(), N * sizeof(float));
  *data = reinterpret_cast<float *>(allocation_ptr->ptr());
  kernel<<<1, 64, 0, ctx.stream()>>>(*data, N);

  // allocate and compute on same stream again
  allocation_ptr = Alloc(ctx, N * sizeof(float));
  EXPECT_GE(allocation_ptr->size(), N * sizeof(float));
  *second_data = reinterpret_cast<float *>(allocation_ptr->ptr());
  kernel<<<1, 64, 0, ctx.stream()>>>(*second_data, N);
}

TEST(Malloc, CUDADeviceContextMultiStream) {
  auto place = platform::CUDAPlace(0);
  EXPECT_TRUE(cudaSuccess == cudaSetDevice(0));

  AllocationPtr main_stream_alloc_ptr = Alloc(place, N * sizeof(float));
  EXPECT_GE(main_stream_alloc_ptr->size(), N * sizeof(float));
  float *main_stream_data =
      reinterpret_cast<float *>(main_stream_alloc_ptr->ptr());

  float *data[NUM_STREAMS];
  float *second_data[NUM_STREAMS];
  CudaDevCtxVec dev_ctx;

  // default stream
  kernel<<<1, 64>>>(main_stream_data, N);
  main_stream_alloc_ptr.reset();

  for (int i = 0; i < NUM_STREAMS; ++i) {
    dev_ctx.push_back(std::unique_ptr<platform::CUDADeviceContext>(
        new platform::CUDADeviceContext(place)));
    MultiStreamCompute(&data[i], &second_data[i], *dev_ctx[i]);
  }

  EXPECT_TRUE(cudaSuccess == cudaDeviceSynchronize());
  for (int i = 0; i < NUM_STREAMS; ++i) {
    CheckKernelOutput(data[i], N);
    CheckKernelOutput(second_data[i], N);
  }
}

TEST(Malloc, CUDADeviceContextMultiThreadMultiStream) {
  auto place = platform::CUDAPlace(0);
  EXPECT_TRUE(cudaSuccess == cudaSetDevice(0));

  AllocationPtr main_stream_alloc_ptr = Alloc(place, N * sizeof(float));
  EXPECT_GE(main_stream_alloc_ptr->size(), N * sizeof(float));
  float *main_stream_data =
      reinterpret_cast<float *>(main_stream_alloc_ptr->ptr());

  float *data[NUM_STREAMS];
  float *second_data[NUM_STREAMS];
  CudaDevCtxVec dev_ctx;
  std::vector<std::thread> threads;

  // default stream
  kernel<<<1, 64>>>(main_stream_data, N);
  main_stream_alloc_ptr.reset();

  for (int i = 0; i < NUM_STREAMS; ++i) {
    dev_ctx.push_back(std::unique_ptr<platform::CUDADeviceContext>(
        new platform::CUDADeviceContext(place)));
    threads.push_back(std::thread(MultiStreamCompute, &data[i], &second_data[i],
                                  std::cref(*dev_ctx[i])));
  }

  for (int i = 0; i < NUM_STREAMS; ++i) {
    threads[i].join();
  }

  EXPECT_TRUE(cudaSuccess == cudaDeviceSynchronize());
  for (int i = 0; i < NUM_STREAMS; ++i) {
    CheckKernelOutput(data[i], N);
    CheckKernelOutput(second_data[i], N);
  }
}

TEST(Malloc, AllocZero) {
  auto place = platform::CUDAPlace(0);
  AllocationPtr allocation_ptr = Alloc(place, 0);
  EXPECT_GE(allocation_ptr->size(), 0);
}
}  // namespace memory
}  // namespace paddle