elementwise_op.cc 9.8 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    nvinfer1::ILayer* layer = nullptr;
    framework::OpDesc op_desc(op, nullptr);
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    PADDLE_ENFORCE(dims_x.nbDims >= 3, "x dims experts 3, but %d is given.",
                   dims_x.nbDims);

    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);

    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

64
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
X
xiexionghang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    if (static_cast<int>(dims_y.size()) == dims_x.nbDims + 1) {
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

    if (static_cast<int>(dims_y.size()) == 1 && dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
    } else if (static_cast<int>(dims_y.size()) == dims_x.nbDims &&
               dims_y[0] == dims_x.d[0]) {
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
      for (int i = 1; i < dims_x.nbDims; i++) {
        if (dims_y[i] != dims_x.d[i]) {
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
        for (int i = 1; i < dims_x.nbDims; i++) {
          if (dims_y[i] != 1)
            PADDLE_THROW(
                "TensorRT unsupported weight shape for Elementwise op!");
        }
      }
    } else {
      PADDLE_THROW("TensorRT unsupported weight Shape for Elementwise op!");
    }

    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                         static_cast<void*>(weight_data),
                                         static_cast<size_t>(Y_t->numel())};
    TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    if (op_type_ == "add") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, shift_weights.get(),
          scale_weights.get(), power_weights.get());
      layer = scale_layer;
    } else if (op_type_ == "mul") {
      nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Scale, *X, scale_mode, scale_weights.get(),
          shift_weights.get(), power_weights.get());
      layer = scale_layer;
    }

    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                             test_mode);
    if (op_desc.HasAttr("out_scale")) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
    }
  }

 protected:
  std::string op_type_;
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    auto op_pair = ops.find(op_type_);
    PADDLE_ENFORCE(op_pair != ops.end(), "Wrong elementwise op type!");

    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
    nvinfer1::ILayer* layer = nullptr;

    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

    int axis = boost::get<int>(op_desc.GetAttr("axis"));
    auto output_name = op_desc.Output("Out")[0];
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
      nvinfer1::IElementWiseLayer* elet_layer = TRT_ENGINE_ADD_LAYER(
          engine_, ElementWise, *const_cast<nvinfer1::ITensor*>(X),
          *const_cast<nvinfer1::ITensor*>(Y), op_pair->second);

      layer = elet_layer;
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";

      plugin::ElementWisePlugin* plugin =
          new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
      plugin->AddInput(X);
      plugin->AddInput(Y);
      nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
          const_cast<nvinfer1::ITensor* const*>(plugin->GetInputs().data()), 2,
          reinterpret_cast<plugin::PluginTensorRT*>(plugin));

      layer = plugin_layer;
    }
    RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
    if (op_desc.HasAttr("out_scale")) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
    }
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);