fc_lstm_fuse_pass.cc 6.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
#include <string>
#include <unordered_set>
#include "paddle/fluid/framework/lod_tensor.h"

namespace paddle {
namespace framework {
namespace ir {

int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
                bool with_fc_bias) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();

  // Build pattern
  PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
                  ->assert_is_op_input("mul")
                  ->assert_var_not_persistable();
  patterns::FC fc_pattern(pattern, name_scope);

  // fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
36 37
  auto* fc_out =
      fc_pattern(x, with_fc_bias, /* with_relu */ false)->AsIntermediate();
X
xiexionghang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  patterns::LSTM lstm_pattern(pattern, name_scope);
  lstm_pattern(fc_out);

  // Create New OpDesc
  auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
                          Node* weight_h, Node* bias, Node* hidden, Node* cell,
                          Node* xx, Node* fc_bias) {
    OpDesc op_desc;
    op_desc.SetType("fusion_lstm");
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
    SET_IN(X, input);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
    SET_IN(Bias, bias);
#undef SET_IN
    if (with_fc_bias) {
      // Add FC-bias with LSTM-bias and create a new weight
      PADDLE_ENFORCE(scope);
      const std::string& new_bias_var = patterns::UniqueKey("NewBias");
      auto* bias_var = scope->Var(new_bias_var);
      PADDLE_ENFORCE(bias_var);
      auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
      auto* lstm_bias_var = scope->FindVar(bias->Name());
      PADDLE_ENFORCE(lstm_bias_var);
      const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
      bias_tensor->Resize(lstm_bias_tensor.dims());

      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
      const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();

      auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());

      for (int i = 0; i < bias_tensor->numel(); i++) {
        data[i] =
            fc_bias_tensor.data<float>()[i] + lstm_bias_tensor.data<float>()[i];
      }
      op_desc.SetInput("Bias", {new_bias_var});
    }

    // Create temp variables.
    const std::string BatchedInput = patterns::UniqueKey("BatchedInput");
    const std::string BatchedCellPreAct =
        patterns::UniqueKey("BatchedCellPreAct");
    const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
    const std::string CheckedCell = patterns::UniqueKey("CheckedCell");

    scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
    scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
    scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
    scope->Var(CheckedCell)->GetMutable<framework::LoDTensor>();

    op_desc.SetInput("H0", {});
    op_desc.SetInput("C0", {});
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetOutput("Cell", {cell->Name()});
    op_desc.SetOutput("XX", {xx->Name()});
    op_desc.SetOutput("BatchedGate", {BatchedGate});
    op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
    op_desc.SetOutput("BatchedInput", {BatchedInput});
    op_desc.SetOutput("CheckedCell", {CheckedCell});
    op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
    op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
    // TODO(TJ): get from attr
    op_desc.SetAttr("use_seq", true);

    PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
    auto& scope = graph->Get<Scope>(kParamScopeAttr);
#define OP_SET_OUT(x)                            \
  const std::string x = patterns::UniqueKey(#x); \
  op_desc.SetOutput(#x, {x});                    \
  scope.Var(x)->GetMutable<LoDTensor>()
    OP_SET_OUT(BatchedCell);
    OP_SET_OUT(BatchedHidden);
    OP_SET_OUT(ReorderedH0);
    OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT

    auto* op = graph->CreateOpNode(&op_desc);
    IR_NODE_LINK_TO(input, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
    IR_NODE_LINK_TO(bias, op);
    IR_NODE_LINK_TO(op, hidden);
    return op;
  };

  int fusion_count{0};

  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
    if (with_fc_bias) {
136
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
X
xiexionghang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   fc_bias);
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
          {mul, lstm, elementwise_add, fc_bias});
      GraphSafeRemoveNodes(graph, marked_nodes);
    } else {
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   nullptr);
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes({mul, lstm});
      GraphSafeRemoveNodes(graph, marked_nodes);
    }

    ++fusion_count;
  };

  gpd(graph, handler);

  return fusion_count;
}

void MulLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);

  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);

  AddStatis(fusion_count);
}

void FCLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);

  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);

  AddStatis(fusion_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass);
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);