scope_buffered_monitor.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/scope_buffered_monitor.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_double(local_exe_sub_scope_limit);

namespace paddle {
namespace framework {
namespace details {

static constexpr double kMB = 1 / (1024 * 1024);

static void GetTensors(Variable *var,
                       std::unordered_set<Tensor *> *tensor_set) {
  if (var->IsType<LoDTensor>() && var->Get<LoDTensor>().IsInitialized()) {
    tensor_set->insert(var->GetMutable<LoDTensor>());
  } else if (var->IsType<SelectedRows>() &&
             var->Get<SelectedRows>().value().IsInitialized()) {
    tensor_set->insert(var->GetMutable<SelectedRows>()->mutable_value());
  } else if (var->IsType<LoDTensorArray>()) {
    auto *tensor_arr = var->GetMutable<LoDTensorArray>();
    for (auto &t : *tensor_arr) {
      if (t.IsInitialized()) {
        tensor_set->insert(&t);
      }
    }
  }
}

static void GetTensors(Scope *scope, std::unordered_set<Tensor *> *tensor_set) {
  for (auto &var_name : scope->LocalVarNames()) {
    GetTensors(scope->FindVar(var_name), tensor_set);
  }

  for (auto *kid : scope->kids()) {
    GetTensors(kid, tensor_set);
  }
}

static size_t GetTensorMemorySize(Scope *scope, bool clear_cpu_tensor) {
  std::unordered_set<Tensor *> tensor_set;
  GetTensors(scope, &tensor_set);
  size_t memory_size = 0;
  std::unordered_set<memory::Allocation *> allocation_set;
  for (auto *tensor : tensor_set) {
    if (clear_cpu_tensor && platform::is_cpu_place(tensor->place())) {
      tensor->clear();
    } else {
      auto allocation = tensor->Holder().get();
      if (!allocation_set.count(allocation)) {
        memory_size += allocation->size();
        allocation_set.insert(allocation);
      }
    }
  }
  return memory_size;
}

size_t GetScopeVarMemorySize(Scope *scope) {
  return GetTensorMemorySize(scope, false /*clear_cpu_tensor*/);
}

ScopeBufferedMonitor::ScopeBufferedMonitor(
    const std::vector<platform::Place> &places,
    const std::vector<Scope *> &local_exec_scopes)
    : places_(places), local_exec_scopes_(local_exec_scopes) {
  pre_local_exec_scopes_.resize(local_exec_scopes_.size());
  post_local_exec_scopes_.resize(local_exec_scopes_.size());
}

void ScopeBufferedMonitor::Apply(const std::function<void()> &callback,
                                 bool has_fetch) {
  std::unique_ptr<platform::RecordEvent> pre_local_exec_scopes_event(
      new platform::RecordEvent(
          "ScopeBufferedMonitor::pre_local_exec_scopes_process"));
  for (size_t scope_id = 0; scope_id < local_exec_scopes_.size(); ++scope_id) {
    pre_local_exec_scopes_.at(scope_id).clear();
    auto scopes = local_exec_scopes_.at(scope_id)->kids();
    VLOG(10) << "pre_local_exec_scopes[" << scope_id
             << "] sub-scope: " << scopes.size();
    pre_local_exec_scopes_.at(scope_id).insert(scopes.begin(), scopes.end());
  }
  pre_local_exec_scopes_event.reset();

  callback();

  std::unique_ptr<platform::RecordEvent> post_local_exec_scopes_event(
      new platform::RecordEvent(
          "ScopeBufferedMonitor::post_local_exec_scopes_process"));
  for (size_t scope_id = 0; scope_id < local_exec_scopes_.size(); ++scope_id) {
    post_local_exec_scopes_.at(scope_id).clear();
    auto scopes = local_exec_scopes_.at(scope_id)->kids();
    VLOG(10) << "post_local_exec_scopes[" << scope_id
             << "] sub-scope: " << scopes.size();
    post_local_exec_scopes_.at(scope_id).insert(scopes.begin(), scopes.end());
  }

  history_local_exec_scopes_.emplace_back();
  auto &incr_local_exec_scopes = history_local_exec_scopes_.back();
  incr_local_exec_scopes.resize(local_exec_scopes_.size());
  for (size_t scope_id = 0; scope_id < local_exec_scopes_.size(); ++scope_id) {
    for (auto &scope : post_local_exec_scopes_.at(scope_id)) {
      if (!pre_local_exec_scopes_.at(scope_id).count(scope)) {
        incr_local_exec_scopes.at(scope_id).insert(scope);
      }
    }

    if (VLOG_IS_ON(10)) {
      if (incr_local_exec_scopes.at(scope_id).size() &&
          FLAGS_local_exe_sub_scope_limit > 0) {
        VLOG(10)
            << "FLAGS_local_exe_sub_scope_limit is "
            << FLAGS_local_exe_sub_scope_limit
            << " MBytes now. If you don't need to limit the memory of local "
               "execution scope, you should set "
               "FLAGS_local_exe_sub_scope_limit=-1.";
      }
      std::stringstream out;
      out << scope_id << " kids: ";
      for (auto &scope : incr_local_exec_scopes.at(scope_id)) {
        out << scope << ", ";
      }
      VLOG(10) << out.str();
    }
  }

  size_t history_step = history_local_exec_scopes_.size();
  if (has_fetch && history_step >= 2) {
    ClearHistoryLocalExecScopes(history_step - 1);
  }

  // Delete CPU Memory
  std::vector<size_t> gpu_memory_size_per_gpu(places_.size());
  for (auto &scope_vec : history_local_exec_scopes_) {
    for (size_t idx = 0; idx < scope_vec.size(); ++idx) {
      for (auto &scope : scope_vec.at(idx)) {
        gpu_memory_size_per_gpu.at(idx) +=
            GetTensorMemorySize(scope, true /*clear_cpu_tensor*/);
      }
    }
  }
  if (VLOG_IS_ON(8)) {
    for (size_t idx = 0; idx < gpu_memory_size_per_gpu.size(); ++idx) {
      VLOG(8) << "history local exec scopes contains "
              << string::HumanReadableSize(gpu_memory_size_per_gpu.at(idx))
              << " in " << places_.at(idx);
    }
  }

  if (FLAGS_local_exe_sub_scope_limit > 0) {
    for (size_t idx = 0; idx < gpu_memory_size_per_gpu.size(); ++idx) {
      if (gpu_memory_size_per_gpu.at(idx) / kMB >=
          FLAGS_local_exe_sub_scope_limit) {
        platform::DeviceContextPool::Instance().Get(places_.at(idx))->Wait();
        local_exec_scopes_.at(idx)->DropKids();
      }
      for (auto &scope_vec : history_local_exec_scopes_) {
        scope_vec.at(idx).clear();
      }
    }
  }
}

void ScopeBufferedMonitor::ClearHistoryLocalExecScopes(size_t history_step) {
  VLOG(10) << "delete pre_incr_local_exec_scopes.";
  for (size_t i = 0; i < history_step; ++i) {
    auto &pre_incr_local_exec_scopes = history_local_exec_scopes_.front();
    for (size_t scope_idx = 0; scope_idx < pre_incr_local_exec_scopes.size();
         ++scope_idx) {
      for (auto scope : pre_incr_local_exec_scopes[scope_idx]) {
        local_exec_scopes_.at(scope_idx)->DeleteScope(scope);
      }
    }
    history_local_exec_scopes_.pop_front();
  }
}

void ScopeBufferedMonitor::ClearHistoryLocalExecScopes() {
  history_local_exec_scopes_.clear();
}

}  // namespace details
}  // namespace framework
}  // namespace paddle