data_set.cc 34.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#include "paddle/fluid/framework/data_set.h"
#include <algorithm>
#include <random>
#include <unordered_map>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/platform/timer.h"
#include "xxhash.h"  // NOLINT

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

namespace paddle {
namespace framework {

// constructor
template <typename T>
DatasetImpl<T>::DatasetImpl() {
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
  thread_num_ = 1;
  trainer_num_ = 1;
  channel_num_ = 1;
  file_idx_ = 0;
  cur_channel_ = 0;
45 46
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
X
xiexionghang 已提交
47 48 49 50
  merge_by_insid_ = false;
  erase_duplicate_feas_ = true;
  keep_unmerged_ins_ = true;
  min_merge_size_ = 2;
51 52 53 54
  parse_ins_id_ = false;
  parse_content_ = false;
  preload_thread_num_ = 0;
  global_index_ = 0;
X
xiexionghang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
}

// set filelist, file_idx_ will reset to zero.
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
  VLOG(3) << "filelist size: " << filelist.size();
  filelist_ = filelist;
  file_idx_ = 0;
}

// set expect thread num. actually it may change
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
  thread_num_ = thread_num;
}

// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
template <typename T>
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
}

// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
}

template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
}

template <typename T>
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

110 111 112 113 114 115 116 117 118 119
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

X
xiexionghang 已提交
120 121 122 123 124
template <typename T>
void DatasetImpl<T>::SetMergeByInsId(
    const std::vector<std::string>& merge_slot_list, bool erase_duplicate_feas,
    int min_merge_size, bool keep_unmerged_ins) {
  merge_by_insid_ = true;
125
  parse_ins_id_ = true;
X
xiexionghang 已提交
126 127 128 129 130 131
  merge_slots_list_ = merge_slot_list;
  erase_duplicate_feas_ = erase_duplicate_feas;
  min_merge_size_ = min_merge_size;
  keep_unmerged_ins_ = keep_unmerged_ins;
}

132 133 134 135 136 137 138 139
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

X
xiexionghang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
}

// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
  platform::Timer timeline;
  timeline.Start();
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
          << ", memory data size=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  if (preload_thread_num_ != 0) {
    CHECK(preload_thread_num_ == preload_readers_.size());
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
    CHECK(thread_num_ == readers_.size());
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
X
xiexionghang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

// do local shuffle
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
  platform::Timer timeline;
  timeline.Start();

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
  }
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
}

template <typename T>
295
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
X
xiexionghang 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
  platform::Timer timeline;
  timeline.Start();
  auto fleet_ptr = FleetWrapper::GetInstance();

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
        auto client_id = get_client_id(t);
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
      for (auto index = 0u; index < this->trainer_num_; ++index) {
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
362 363 364 365 366 367
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
X
xiexionghang 已提交
368 369 370 371
    }
  };

  std::vector<std::thread> global_shuffle_threads;
372 373 374 375 376
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
X
xiexionghang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
  }
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
template <typename T>
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
  for (int i = 0; i < multi_output_channel_.size(); ++i) {
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
  }
  CHECK(origin_channels != nullptr);  // NOLINT
  CHECK(other_channels != nullptr);   // NOLINT

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
  std::vector<T> local_vec;
  for (int i = 0; i < origin_channels->size(); ++i) {
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
  total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                   1);

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

X
xiexionghang 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
template <typename T>
void DatasetImpl<T>::CreateReaders() {
  VLOG(3) << "Calling CreateReaders()";
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
  VLOG(3) << "readers size: " << readers_.size();
  if (readers_.size() != 0) {
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
    return;
  }
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
  int channel_idx = 0;
  for (int i = 0; i < thread_num_; ++i) {
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
510 511
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
X
xiexionghang 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
    if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
    } else if (channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
  }
  VLOG(3) << "readers size: " << readers_.size();
}

template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
  VLOG(3) << "readers size1: " << readers_.size();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  VLOG(3) << "readers size: " << readers_.size();
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

X
xiexionghang 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
  return input_channel_->Size();
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
  }
  return sum;
}

template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
                                      const std::string& msg) {
#ifdef _LINUX
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
          << ", client_id=" << client_id << ", msg length=" << msg.length();
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

  auto fleet_ptr = FleetWrapper::GetInstance();
616 617 618 619 620 621 622 623 624 625
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
X
xiexionghang 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  VLOG(3) << "ramdom index=" << index;
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
#endif
  return 0;
}

// explicit instantiation
template class DatasetImpl<Record>;

void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::unordered_map<int, bool> merge_slots;
  std::vector<std::string> use_slots;
  std::vector<bool> use_slots_is_dense;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
      use_slots_is_dense.push_back(slot.is_dense());
    }
  }
  for (size_t i = 0; i < use_slots.size(); ++i) {
    // currently, we don't merge dense slots
    if (std::find(merge_slots_list_.begin(), merge_slots_list_.end(),
                  use_slots[i]) != merge_slots_list_.end() &&
        !use_slots_is_dense[i]) {
      merge_slots[i] = true;
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  auto sort_cmp_uint64 = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto sort_cmp_float = [&merge_slots](const FeatureItem& a,
                                       const FeatureItem& b) {
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto unique_eq_uint64 = [&merge_slots](const FeatureItem& a,
                                         const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };
  auto unique_eq_float = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };

  std::vector<Record> results;
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
    if (j - i < min_merge_size_) {
      if (keep_unmerged_ins_) {
        for (size_t k = i; k < j; ++k) {
          results.push_back(std::move(recs[k]));
        }
      }
      i = j;
      continue;
    }

    std::vector<FeatureItem> merge_uint64_feasigns;
    std::vector<FeatureItem> merge_float_feasigns;
    Record rec = std::move(recs[i]);

    for (size_t k = i + 1; k < j; k++) {
      for (auto& feature : recs[k].uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        }
      }
      recs[k] = Record();
    }
    i = j;

    if (!erase_duplicate_feas_) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
    } else {
      std::vector<FeatureItem> not_merge_uint64_feasigns;
      std::vector<FeatureItem> not_merge_float_feasigns;

      for (auto& feature : rec.uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        } else {
          not_merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : rec.float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        } else {
          not_merge_float_feasigns.push_back(std::move(feature));
        }
      }
      rec.uint64_feasigns_.clear();
      rec.float_feasigns_.clear();

      // erase duplicate uint64 feasigns
      std::sort(merge_uint64_feasigns.begin(), merge_uint64_feasigns.end(),
                sort_cmp_uint64);
      merge_uint64_feasigns.erase(
          std::unique(merge_uint64_feasigns.begin(),
                      merge_uint64_feasigns.end(), unique_eq_uint64),
          merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  not_merge_uint64_feasigns.begin(),
                                  not_merge_uint64_feasigns.end());

      // erase duplicate float feasigns
      std::sort(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                sort_cmp_float);
      merge_float_feasigns.erase(
          std::unique(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                      unique_eq_float),
          merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 not_merge_float_feasigns.begin(),
                                 not_merge_float_feasigns.end());
    }
    results.push_back(rec);
  }
  VLOG(3) << "results size " << results.size();
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
                                     std::vector<Record>* result) {
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
  for (const auto& rec : slots_shuffle_original_data_) {
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
      auto range = rand_rec.feas.equal_range(slot);
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
  if (!slots_shuffle_fea_eval_) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
               "fea eval mode off, need to set on for slots shuffle";
    return;
  }
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
  platform::Timer timeline;
  timeline.Start();
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::set<uint16_t> index_slots;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

X
xiexionghang 已提交
999 1000
}  // end namespace framework
}  // end namespace paddle