readme.md 11.8 KB
Newer Older
Y
yinhaofeng 已提交
1 2
# 基于FM模型的点击率预估模型

Y
picture  
yinhaofeng 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
以下是本例的简要目录结构及说明: 

```
├── sample_data #样例数据
    ├── train
        ├── sample_train.txt #训练数据样例
    ├── preprocess.py #数据处理程序
    ├── run.sh #数据一键处理脚本
    ├── download_preprocess.py #数据下载脚本
    ├── get_slot_data.py #格式整理程序
├── __init__.py
├── README.md #文档
├── model.py #模型文件
├── config.yaml #配置文件
```

注:在阅读该示例前,建议您先了解以下内容:

[paddlerec入门教程](https://github.com/PaddlePaddle/PaddleRec/blob/master/README.md)

## 内容

- [模型简介](#模型简介)
- [数据准备](#数据准备)
- [运行环境](#运行环境)
- [快速开始](#快速开始)
- [模型组网](#模型组网)
- [效果复现](#效果复现)
- [进阶使用](#进阶使用)
- [FAQ](#FAQ)

## 模型简介
Y
yinhaofeng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
`CTR(Click Through Rate)`,即点击率,是“推荐系统/计算广告”等领域的重要指标,对其进行预估是商品推送/广告投放等决策的基础。简单来说,CTR预估对每次广告的点击情况做出预测,预测用户是点击还是不点击。CTR预估模型综合考虑各种因素、特征,在大量历史数据上训练,最终对商业决策提供帮助。本模型实现了下述论文中的FM模型:

```text
@inproceedings{guo2017deepfm,
  title={DeepFM: A Factorization-Machine based Neural Network for CTR Prediction},
  author={Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li and Xiuqiang He},
  booktitle={the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI)},
  pages={1725--1731},
  year={2017}
}
```

## 数据准备
### 数据来源
训练及测试数据集选用[Display Advertising Challenge](https://www.kaggle.com/c/criteo-display-ad-challenge/)所用的Criteo数据集。该数据集包括两部分:训练集和测试集。训练集包含一段时间内Criteo的部分流量,测试集则对应训练数据后一天的广告点击流量。
每一行数据格式如下所示:
```bash
<label> <integer feature 1> ... <integer feature 13> <categorical feature 1> ... <categorical feature 26>
```
Y
picture  
yinhaofeng 已提交
54 55
其中```<label>```表示广告是否被点击,点击用1表示,未点击用0表示。```<integer feature>```代表数值特征(连续特征),共有13个连续特征。```<categorical feature>```代表分类特征(离散特征),共有26个离散特征。相邻两个特征用```\t```分隔,缺失特征用空格表示。测试集中```<label>```特征已被移除。  
详细的数据解析过程请参考dnn模型下的readme文件:[基于DNN模型的点击率预估模型](https://github.com/PaddlePaddle/PaddleRec/blob/master/models/rank/dnn/README.md)
Y
yinhaofeng 已提交
56 57 58 59 60 61 62

### 一键下载训练及测试数据
```bash
sh run.sh
```
进入models/rank/fm/data目录下,执行该脚本,会从国内源的服务器上下载Criteo数据集,并解压到指定文件夹,然后自动处理数据转化为可直接进行训练的格式。解压后全量训练数据放置于`./train_datal`,全量测试数据放置于`./test_data`,可以直接输入的训练数据放置于`./slot_train_datal`,可直接输入的测试数据放置于`./slot_test_datal`

Y
picture  
yinhaofeng 已提交
63 64 65 66 67 68 69 70 71 72 73
## 运行环境
PaddlePaddle>=1.7.2

python 2.7/3.5/3.6/3.7

PaddleRec >=0.1

os : windows/linux/macos

## 快速开始
本文提供了样例数据可以供您快速体验,在paddlerec目录下执行下面的命令即可快速启动训练: 
Y
yinhaofeng 已提交
74 75

```
Y
picture  
yinhaofeng 已提交
76
python -m paddlerec.run -m models/rank/fm/config.yaml
Y
yinhaofeng 已提交
77
```
Y
picture  
yinhaofeng 已提交
78
使用样例数据快速跑通的结果实例:
Y
yinhaofeng 已提交
79

Y
picture  
yinhaofeng 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
```
PaddleRec: Runner train_runner Begin
Executor Mode: train
processor_register begin
Running SingleInstance.
Running SingleNetwork.
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Running SingleStartup.
Running SingleRunner.
I0925 03:07:10.455991 26128 parallel_executor.cc:440] The Program will be executed on CPU using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel.
I0925 03:07:10.460461 26128 build_strategy.cc:365] SeqOnlyAllReduceOps:0, num_trainers:1
I0925 03:07:10.476308 26128 parallel_executor.cc:307] Inplace strategy is enabled, when build_strategy.enable_inplace = True
I0925 03:07:10.477986 26128 parallel_executor.cc:375] Garbage collection strategy is enabled, when FLAGS_eager_delete_tensor_gb = 0
2020-09-25 03:07:10,761-INFO:   [Train] batch: 1, time_each_interval: 0.31s, BATCH_AUC: [0.55555556], AUC: [0.55555556]
2020-09-25 03:07:10,816-INFO:   [Train] batch: 2, time_each_interval: 0.06s, BATCH_AUC: [0.61111111], AUC: [0.61111111]
2020-09-25 03:07:10,870-INFO:   [Train] batch: 3, time_each_interval: 0.05s, BATCH_AUC: [0.515625], AUC: [0.515625]
2020-09-25 03:07:10,921-INFO:   [Train] batch: 4, time_each_interval: 0.05s, BATCH_AUC: [0.59], AUC: [0.59]
2020-09-25 03:07:10,975-INFO:   [Train] batch: 5, time_each_interval: 0.05s, BATCH_AUC: [0.52380952], AUC: [0.52380952]
Y
yinhaofeng 已提交
98
...
Y
picture  
yinhaofeng 已提交
99 100 101 102 103
2020-09-25 03:07:13,307-INFO:   [Train] batch: 17, time_each_interval: 0.06s, BATCH_AUC: [0.63376048], AUC: [0.63376048]
2020-09-25 03:07:13,363-INFO:   [Train] batch: 18, time_each_interval: 0.06s, BATCH_AUC: [0.64298615], AUC: [0.64298615]
2020-09-25 03:07:13,417-INFO:   [Train] batch: 19, time_each_interval: 0.05s, BATCH_AUC: [0.64117133], AUC: [0.64117133]
epoch 1 done, use time: 1.08840990067, global metrics: BATCH_AUC=0.64117133, AUC=[0.64117133]
PaddleRec Finish
Y
yinhaofeng 已提交
104
```
Y
picture  
yinhaofeng 已提交
105
## 模型组网
Y
yinhaofeng 已提交
106 107 108

FM模型的组网本质是一个二分类任务,代码参考`model.py`。模型主要组成是一阶项部分,二阶项部分以及相应的分类任务的loss计算和auc计算。模型的组网可以较为方便的于公式对应,FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。

Y
picture  
yinhaofeng 已提交
109 110 111 112 113 114 115 116
<img align="center" src="picture/1.jpg">

### 一阶项部分
一阶项部分类似于我们rank下的logistic_regression模型。主要由embedding层和reduce_sum层组成  
首先介绍Embedding层的搭建方式:`Embedding`层的输入是`feat_idx`,shape由超参的`sparse_feature_number`定义。需要特别解释的是`is_sparse`参数,当我们指定`is_sprase=True`后,计算图会将该参数视为稀疏参数,反向更新以及分布式通信时,都以稀疏的方式进行,会极大的提升运行效率,同时保证效果一致。  
各个稀疏的输入通过Embedding层后,进行reshape操作,方便和连续值进行结合。  
将离散数据通过embedding查表得到的值,与连续数据的输入进行相乘再累加的操作,合为一个一阶项的整体。  
我们又构造了一个初始化为0,shape为1的变量,作为公式前零阶项的部分。 
Y
yinhaofeng 已提交
117

Y
picture  
yinhaofeng 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
<img align="center" src="picture/2.jpg">

### 二阶项部分
二阶项部分主要实现了公式中的交叉项部分,也就是特征的组合部分。Wij求解的思路是通过矩阵分解的方法。所有的二次项参数Wij可以组成一个对称阵W,那么这个矩阵就可以如下分解:  

<img align="center" src="picture/3.jpg">

V 的第 i 列便是第 i 维特征的隐向量。特征分量Xi与Xj的交叉项系数就等于Xi对应的隐向量与Xj对应的隐向量的内积,即每个参数 wij=⟨vi,vj⟩
交叉项的展开式如下:

<img align="center" src="picture/4.jpg">


### Loss及Auc计算
Y
yinhaofeng 已提交
132 133
- 预测的结果通过直接通过激活函数sigmoid给出,为了得到每条样本分属于正负样本的概率,我们将预测结果和`1-predict`合并起来得到predict_2d,以便接下来计算auc。  
- 每条样本的损失为负对数损失值,label的数据类型将转化为float输入。  
Y
picture  
yinhaofeng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
- 该batch的损失`avg_cost`是各条样本的损失之和  
- 我们同时还会计算预测的auc,auc的结果由`fluid.layers.auc()`给出,该层的返回值有三个,分别是全局auc: `auc_var`,当前batch的auc: `batch_auc_var`,以及auc_states: `_`,auc_states包含了`batch_stat_pos, batch_stat_neg, stat_pos, stat_neg`信息。  
  完成上述组网后,我们最终可以通过训练拿到`auc`指标。  

## 效果复现
为了方便使用者能够快速的跑通每一个模型,我们在每个模型下都提供了样例数据。如果需要复现readme中的效果,请按如下步骤依次操作即可。
在全量数据下模型的指标如下:  

| 模型 | auc | batch_size | thread_num| epoch_num| Time of each epoch |
| :------| :------ | :------| :------ | :------| :------ | 
| FM | 0.7619 | 1024 | 10 | 2 | 约3.5小时 |

1. 确认您当前所在目录为PaddleRec/models/rank/fm
2. 在data目录下运行数据一键处理脚本,命令如下:  
``` 
cd data
sh run.sh
cd ..
Y
yinhaofeng 已提交
152
```
Y
picture  
yinhaofeng 已提交
153 154 155 156 157 158 159 160
3. 退回fm目录中,打开文件config.yaml,更改其中的参数  
将workspace改为您当前的绝对路径。(可用pwd命令获取绝对路径)  
将train_sample中的batch_size从5改为1024  
将train_sample中的data_path改为{workspace}/data/slot_train_data  
将infer_sample中的batch_size从5改为1024  
将infer_sample中的data_path改为{workspace}/data/slot_test_data  
根据自己的需求调整phase中的线程数  
4. 运行命令,模型会进行两个epoch的训练,然后预测第二个epoch,并获得相应auc指标  
Y
yinhaofeng 已提交
161
```
Y
picture  
yinhaofeng 已提交
162 163 164
python -m paddlerec.run -m ./config.yaml
```
5. 经过全量数据训练后,执行预测的结果示例如下:
Y
yinhaofeng 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
```
PaddleRec: Runner train_runner Begin
Executor Mode: train
processor_register begin
Running SingleInstance.
Running SingleNetwork.
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:[]
Running SingleStartup.
Running SingleRunner.
I0921 13:11:33.118367 20932 parallel_executor.cc:440] The Program will be executed on CPU using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel.
I0921 13:11:33.120508 20932 build_strategy.cc:365] SeqOnlyAllReduceOps:0, num_trainers:1
I0921 13:11:33.122474 20932 parallel_executor.cc:307] Inplace strategy is enabled, when build_strategy.enable_inplace = True
I0921 13:11:33.123886 20932 parallel_executor.cc:375] Garbage collection strategy is enabled, when FLAGS_eager_delete_tensor_gb = 0
2020-09-21 13:11:33,631-INFO:   [Train] batch: 1, time_each_interval: 0.51s, BATCH_AUC: [0.44643497], AUC: [0.44643497]
2020-09-21 13:11:33,831-INFO:   [Train] batch: 2, time_each_interval: 0.20s, BATCH_AUC: [0.46514697], AUC: [0.46514697]
2020-09-21 13:11:33,983-INFO:   [Train] batch: 3, time_each_interval: 0.15s, BATCH_AUC: [0.47406181], AUC: [0.47406181]
2020-09-21 13:11:34,139-INFO:   [Train] batch: 4, time_each_interval: 0.16s, BATCH_AUC: [0.47984827], AUC: [0.47984827]
...
2020-09-22 12:16:08,478-INFO:   [Infer] batch: 8973, time_each_interval: 0.25s, AUC: [0.76192624]
2020-09-22 12:16:08,625-INFO:   [Infer] batch: 8974, time_each_interval: 0.15s, AUC: [0.76192887]
2020-09-22 12:16:08,760-INFO:   [Infer] batch: 8975, time_each_interval: 0.14s, AUC: [0.76193024]
2020-09-22 12:16:08,964-INFO:   [Infer] batch: 8976, time_each_interval: 0.20s, AUC: [0.76193132]
2020-09-22 12:16:09,186-INFO:   [Infer] batch: 8977, time_each_interval: 0.22s, AUC: [0.7619334]
2020-09-22 12:16:09,439-INFO:   [Infer] batch: 8978, time_each_interval: 0.25s, AUC: [0.7619324]
2020-09-22 12:16:09,687-INFO:   [Infer] batch: 8979, time_each_interval: 0.25s, AUC: [0.76193426]
2020-09-22 12:16:09,900-INFO:   [Infer] batch: 8980, time_each_interval: 0.21s, AUC: [0.76193488]
2020-09-22 12:16:10,101-INFO:   [Infer] batch: 8981, time_each_interval: 0.20s, AUC: [0.76193451]
2020-09-22 12:16:10,279-INFO:   [Infer] batch: 8982, time_each_interval: 0.18s, AUC: [0.76193513]
2020-09-22 12:16:10,518-INFO:   [Infer] batch: 8983, time_each_interval: 0.24s, AUC: [0.76193726]
Infer infer_phase of epoch 1 done, use time: 1764.81796193, global metrics: AUC=0.76193726
PaddleRec Finish
```
Y
picture  
yinhaofeng 已提交
198 199 200 201

## 进阶使用

## FAQ