single_trainer.py 4.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging
import paddle.fluid as fluid

T
tangwei 已提交
23 24
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
from fleetrec.core.utils import envs
T
tangwei 已提交
25
import numpy as np
T
tangwei 已提交
26 27 28 29 30 31

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


T
tangwei 已提交
32
class SingleTrainer(TranspileTrainer):
T
tangwei 已提交
33 34 35
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
T
tangwei 已提交
36 37 38 39 40 41

        if envs.get_platform() == "LINUX":
            self.regist_context_processor('train_pass', self.dataset_train)
        else:
            self.regist_context_processor('train_pass', self.dataloader_train)

T
tangwei 已提交
42 43 44 45
        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)

    def init(self, context):
T
tangwei 已提交
46
        self.model.train_net()
T
tangwei 已提交
47
        optimizer = self.model.optimizer()
T
tangwei 已提交
48
        optimizer.minimize((self.model.get_cost_op()))
T
tangwei 已提交
49 50 51 52

        self.fetch_vars = []
        self.fetch_alias = []
        self.fetch_period = self.model.get_fetch_period()
T
tangwei 已提交
53

T
tangwei 已提交
54 55 56 57
        metrics = self.model.get_metrics()
        if metrics:
            self.fetch_vars = metrics.values()
            self.fetch_alias = metrics.keys()
T
tangwei 已提交
58 59
        context['status'] = 'train_pass'

T
tangwei 已提交
60
    def dataloader_train(self, context):
T
tangwei 已提交
61
        self._exe.run(fluid.default_startup_program())
T
tangwei 已提交
62 63
        reader = self._get_dataloader()
        epochs = envs.get_global_env("train.epochs")
T
tangwei 已提交
64

T
tangwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78
        program = fluid.compiler.CompiledProgram(
            fluid.default_main_program()).with_data_parallel(
            loss_name=self.model.get_cost_op.name)

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)
T
tangwei 已提交
79

T
tangwei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics_rets = np.mean(metrics_rets, axis=0)
                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets.tolist())

                    if batch_id % 10 == 0 and batch_id != 0:
                        print(metrics_format.format(metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

        context['status'] = 'infer_pass'

    def dataset_train(self, context):
        # run startup program at once
        self._exe.run(fluid.default_startup_program())
        dataset = self._get_dataset()
T
tangwei 已提交
105 106 107
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
T
tangwei 已提交
108 109 110 111 112
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)
T
tangwei 已提交
113 114 115 116 117 118 119 120 121 122
            self.save(i, "train", is_fleet=False)
        context['status'] = 'infer_pass'

    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True