tdm_single_trainer.py 5.5 KB
Newer Older
C
chengmo 已提交
1
# -*- coding=utf-8 -*-
C
chengmo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging
import paddle.fluid as fluid

24 25 26
from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.trainers.single_trainer import SingleTrainer
from paddlerec.core.utils import envs
C
chengmo 已提交
27 28 29 30 31
import numpy as np

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
C
chengmo 已提交
32 33
special_param = ["TDM_Tree_Travel", "TDM_Tree_Layer",
                 "TDM_Tree_Info", "TDM_Tree_Emb"]
C
chengmo 已提交
34 35


C
chengmo 已提交
36
class TDMSingleTrainer(SingleTrainer):
C
chengmo 已提交
37 38 39 40 41 42 43 44
    def startup(self, context):
        namespace = "train.startup"
        load_persistables = envs.get_global_env(
            "single.load_persistables", False, namespace)
        persistables_model_path = envs.get_global_env(
            "single.persistables_model_path", "", namespace)

        load_tree = envs.get_global_env(
C
fix  
chengmo 已提交
45
            "tree.load_tree", False, namespace)
C
chengmo 已提交
46
        self.tree_layer_path = envs.get_global_env(
C
fix  
chengmo 已提交
47
            "tree.tree_layer_path", "", namespace)
C
chengmo 已提交
48
        self.tree_travel_path = envs.get_global_env(
C
fix  
chengmo 已提交
49
            "tree.tree_travel_path", "", namespace)
C
chengmo 已提交
50
        self.tree_info_path = envs.get_global_env(
C
fix  
chengmo 已提交
51
            "tree.tree_info_path", "", namespace)
C
chengmo 已提交
52
        self.tree_emb_path = envs.get_global_env(
C
fix  
chengmo 已提交
53
            "tree.tree_emb_path", "", namespace)
C
chengmo 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        save_init_model = envs.get_global_env(
            "single.save_init_model", False, namespace)
        init_model_path = envs.get_global_env(
            "single.init_model_path", "", namespace)
        self._exe.run(fluid.default_startup_program())

        if load_persistables:
            # 从paddle二进制模型加载参数
            fluid.io.load_persistables(
                executor=self._exe,
                dirname=persistables_model_path,
                main_program=fluid.default_main_program())
            logger.info("Load persistables from \"{}\"".format(
                persistables_model_path))

        if load_tree:
            # 将明文树结构及数据,set到组网中的Variale中
            # 不使用NumpyInitialize方法是考虑到树结构相关数据size过大,有性能风险
C
chengmo 已提交
73
            for param_name in special_param:
C
chengmo 已提交
74 75 76
                param_t = fluid.global_scope().find_var(param_name).get_tensor()
                param_array = self.tdm_prepare(param_name)
                if param_name == 'TDM_Tree_Emb':
C
chengmo 已提交
77
                    param_t.set(param_array.astype('float32'), self._place)
C
chengmo 已提交
78
                else:
C
chengmo 已提交
79
                    param_t.set(param_array.astype('int32'), self._place)
C
chengmo 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

        if save_init_model:
            logger.info("Begin Save Init model.")
            fluid.io.save_persistables(
                executor=self._exe, dirname=init_model_path)
            logger.info("End Save Init model.")

        context['status'] = 'train_pass'

    def tdm_prepare(self, param_name):
        if param_name == "TDM_Tree_Travel":
            travel_array = self.tdm_travel_prepare()
            return travel_array
        elif param_name == "TDM_Tree_Layer":
            layer_array, _ = self.tdm_layer_prepare()
            return layer_array
        elif param_name == "TDM_Tree_Info":
            info_array = self.tdm_info_prepare()
            return info_array
        elif param_name == "TDM_Tree_Emb":
            emb_array = self.tdm_emb_prepare()
            return emb_array
        else:
            raise " {} is not a special tdm param name".format(param_name)

    def tdm_travel_prepare(self):
        """load tdm tree param from npy/list file"""
        travel_array = np.load(self.tree_travel_path)
        logger.info("TDM Tree leaf node nums: {}".format(
            travel_array.shape[0]))
        return travel_array

    def tdm_emb_prepare(self):
        """load tdm tree param from npy/list file"""
        emb_array = np.load(self.tree_emb_path)
        logger.info("TDM Tree node nums from emb: {}".format(
            emb_array.shape[0]))
        return emb_array

    def tdm_layer_prepare(self):
        """load tdm tree param from npy/list file"""
        layer_list = []
        layer_list_flat = []
        with open(self.tree_layer_path, 'r') as fin:
            for line in fin.readlines():
                l = []
                layer = (line.split('\n'))[0].split(',')
                for node in layer:
                    if node:
                        layer_list_flat.append(node)
                        l.append(node)
                layer_list.append(l)
        layer_array = np.array(layer_list_flat)
        layer_array = layer_array.reshape([-1, 1])
        logger.info("TDM Tree max layer: {}".format(len(layer_list)))
        logger.info("TDM Tree layer_node_num_list: {}".format(
            [len(i) for i in layer_list]))
        return layer_array, layer_list

    def tdm_info_prepare(self):
        """load tdm tree param from list file"""
        info_array = np.load(self.tree_info_path)
        return info_array