cluster_train.py 7.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import os
import time
import numpy as np
import logging
import paddle.fluid as fluid

from .trainer import Trainer
from ..utils import envs

from ..reader import dataset

from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def need_save(epoch_id, epoch_interval, is_last=False):
    if is_last:
        return True

    return epoch_id % epoch_interval == 0


class ClusterTrainer(Trainer):

    def __init__(self, config=None, yaml_file=None):
        Trainer.__init__(self, config, yaml_file)

        self.exe = fluid.Executor(fluid.CPUPlace())

        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('server_pass', self.server)
        self.regist_context_processor('train_pass', self.train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def build_role_maker(self):
        role_maker = envs.get_global_env("train.role_maker")

        if role_maker == "PaddleCloudRoleMaker":
            role = PaddleCloudRoleMaker()
            return role
        else:
            raise ValueError("only support PaddleCloudRoleMaker now")

    def build_strategy(self):
        mode = envs.get_global_env("train.strategy.mode")
        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        return strategy

    def instance(self, context):
        model_package = __import__(envs.get_global_env("train.model.models"))
        train_model = getattr(model_package, 'Train')

        self.model = train_model()

        context['status'] = 'init_pass'

    def init(self, context):
        fleet.init(self.build_role_maker())

        self.model.input()
        self.model.net()
        self.model.loss()
        self.metrics = self.model.metrics()
        self.loss = self.model.avg_loss()

        optimizer = self.model.get_optimizer()
        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(self.loss)

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.init_server()
        fleet.run_server()

        context['status'] = 'wait'

    def terminal(self, context):
        fleet.stop_worker()
        context['is_exit'] = True

    def train(self, context):
        print("Need to be implement")
        context['is_exit'] = True


class ClusterTrainerWithDataloader(ClusterTrainer):
    pass


class ClusterTrainerWithDataset(ClusterTrainer):
    def _get_dataset(self, inputs, threads, batch_size, pipe_command, train_files_path):
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(inputs)
        dataset.set_pipe_command(pipe_command)
        dataset.set_batch_size(batch_size)
        dataset.set_thread(threads)
        file_list = [
            os.path.join(train_files_path, x)
            for x in os.listdir(train_files_path)
        ]

        dataset.set_filelist(file_list)
        return dataset

    def save(self, epoch_id):
        def save_inference_model():
            is_save_inference = envs.get_global_env("save.inference", False)
            if not is_save_inference:
                return

            save_interval = envs.get_global_env("save.inference.epoch_interval", 1)
            if not need_save(epoch_id, save_interval, False):
                return

            feed_varnames = envs.get_global_env("save.inference.feed_varnames", None)
            fetch_varnames = envs.get_global_env("save.inference.fetch_varnames", None)
            fetch_vars = [fluid.global_scope().vars[varname] for varname in fetch_varnames]
            dirname = envs.get_global_env("save.inference.dirname", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))
            fluid.io.save_inference_model(dirname, feed_varnames, fetch_vars, self.exe)

        def save_persistables():
            is_save_increment = envs.get_global_env("save.increment", False)
            if not is_save_increment:
                return

            save_interval = envs.get_global_env("save.increment.epoch_interval", 1)
            if not need_save(epoch_id, save_interval, False):
                return

            dirname = envs.get_global_env("save.inference.dirname", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))
            fluid.io.save_persistables(self.exe, dirname)

        is_save = envs.get_global_env("save", False)

        if not is_save:
            return

        save_persistables()
        save_inference_model()

    def train(self, context):
        inputs = self.model.input_vars()
        threads = envs.get_global_env("threads")
        batch_size = envs.get_global_env("batch_size")
        pipe_command = envs.get_global_env("pipe_command")
        train_data_path = envs.get_global_env("train_data_path")

        dataset = self._get_dataset(inputs, threads, batch_size, pipe_command, train_data_path)

        fleet.init_worker()
        self.exe.run(fleet.startup_program)

        epochs = envs.get_global_env("epochs")

        for i in range(epochs):
            self.exe.train_from_dataset(program=fluid.default_main_program(),
                                        dataset=dataset,
                                        fetch_list=[self.metrics],
                                        fetch_info=["epoch {} auc ".format(i)],
                                        print_period=100)
            self.save(i)

        context['status'] = 'infer_pass'

    def infer(self, context):
        context['status'] = 'terminal_pass'