ctr_coding_trainer.py 4.8 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import json
import datetime
import numpy as np

import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
from paddle.fluid.incubate.fleet.base.role_maker import MPISymetricRoleMaker

from fleetrec.core.utils import envs
from fleetrec.core.trainer import Trainer


class CtrPaddleTrainer(Trainer):
    """R
    """

    def __init__(self, config):
        """R
        """
        Trainer.__init__(self, config)

        self.global_config = config
        self._metrics = {}
        self.processor_register()

    def processor_register(self):
        role = MPISymetricRoleMaker()
        fleet.init(role)

        if fleet.is_server():
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('train_pass', self.train)
            self.regist_context_processor('terminal_pass', self.terminal)

    def _get_dataset(self):
        namespace = "train.reader"

        inputs = self.model.get_inputs()
        threads = envs.get_global_env("train.threads", None)
        batch_size = envs.get_global_env("batch_size", None, namespace)
        reader_class = envs.get_global_env("class", None, namespace)
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'reader_instance.py')
        pipe_cmd = "python {} {} {} {}".format(reader, reader_class, "TRAIN", self._config)
        train_data_path = envs.get_global_env("train_data_path", None, namespace)

        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(inputs)
        dataset.set_pipe_command(pipe_cmd)
        dataset.set_batch_size(batch_size)
        dataset.set_thread(threads)
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]

        dataset.set_filelist(file_list)
        return dataset

    def instance(self, context):
        models = envs.get_global_env("train.model.models")
        model_class = envs.lazy_instance(models, "Model")
        self.model = model_class(None)
        context['status'] = 'init_pass'

    def init(self, context):
        """R
        """
        self.model.train_net()
        optimizer = self.model.optimizer()

        optimizer = fleet.distributed_optimizer(optimizer, strategy={"use_cvm": False})
        optimizer.minimize(self.model.get_cost_op())

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
            self.fetch_vars = []
            self.fetch_alias = []
            self.fetch_period = self.model.get_fetch_period()

            metrics = self.model.get_metrics()
            if metrics:
                self.fetch_vars = metrics.values()
                self.fetch_alias = metrics.keys()
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.run_server()
        context['is_exit'] = True

    def train(self, context):
        self._exe.run(fluid.default_startup_program())
        fleet.init_worker()

        dataset = self._get_dataset()

        shuf = np.array([fleet.worker_index()])
        gs = shuf * 0
        fleet._role_maker._node_type_comm.Allreduce(shuf, gs)

        print("trainer id: {}, trainers: {}, gs: {}".format(fleet.worker_index(), fleet.worker_num(), gs))

        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)

        context['status'] = 'terminal_pass'
        fleet.stop_worker()

    def terminal(self, context):
        print("terminal ended.")
        context['is_exit'] = True