config.yaml 2.5 KB
Newer Older
Y
yinhaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyrigh t(c) 2020 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


C
Chengmo 已提交
16
workspace: "models/match/match-pyramid"
Y
yinhaofeng 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

dataset:
- name: dataset_train
  batch_size: 128
  type: DataLoader
  data_path: "{workspace}/data/train" 
  data_converter: "{workspace}/train_reader.py"
- name: dataset_infer
  batch_size: 1
  type: DataLoader
  data_path: "{workspace}/data/test"
  data_converter: "{workspace}/test_reader.py"


hyper_parameters:
  optimizer:
    class: adam
    learning_rate: 0.001
    strategy: async
  emb_path: "./data/embedding.npy"
  sentence_left_size: 20
  sentence_right_size: 500
  vocab_size: 193368
  emb_size: 50
  kernel_num: 8
  hidden_size: 20
  hidden_act: "relu"
  out_size: 1
  channels: 1
  conv_filter: [2,10]
  conv_act: "relu"
  pool_size: [6,50]
  pool_stride: [6,50]
  pool_type: "max"
  pool_padding: "VALID"

mode: [train_runner , infer_runner]
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner:
- name: train_runner
  class: train
  # num of epochs
  epochs: 2
  # device to run training or infer
  device: cpu
  save_checkpoint_interval: 1 # save model interval of epochs
  save_inference_interval: 1 # save inference
  save_checkpoint_path: "inference" # save checkpoint path
  save_inference_path: "inference" # save inference path
  save_inference_feed_varnames: [] # feed vars of save inference
  save_inference_fetch_varnames: [] # fetch vars of save inference
  init_model_path: "" # load model path
  print_interval: 2
  phases: phase_train
- name: infer_runner
  class: infer
  # device to run training or infer
  device: cpu
  print_interval: 1
  init_model_path: "inference/1" # load model path
  phases: phase_infer

# runner will run all the phase in each epoch
phase:
- name: phase_train
  model: "{workspace}/model.py" # user-defined model
  dataset_name: dataset_train # select dataset by name
  thread_num: 1
- name: phase_infer
  model: "{workspace}/model.py" # user-defined model
  dataset_name: dataset_infer # select dataset by name
  thread_num: 1