reader.py 2.4 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

T
tangwei 已提交
16 17
from fleetrec.core.reader import Reader
from fleetrec.core.utils import envs
T
tangwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


class TrainReader(Reader):
    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
        self.cont_diff_ = [20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
        self.hash_dim_ = envs.get_global_env("hyper_parameters.sparse_feature_number", None, "train.model")
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)

    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """

        def reader():
            """
            This function needs to be implemented by the user, based on data format
            """
            features = line.rstrip('\n').split('\t')

            dense_feature = []
            sparse_feature = []
            for idx in self.continuous_range_:
                if features[idx] == "":
                    dense_feature.append(0.0)
                else:
                    dense_feature.append(
                        (float(features[idx]) - self.cont_min_[idx - 1]) /
                        self.cont_diff_[idx - 1])

            for idx in self.categorical_range_:
                sparse_feature.append(
                    [hash(str(idx) + features[idx]) % self.hash_dim_])
            label = [int(features[0])]
            feature_name = ["dense_input"]
            for idx in self.categorical_range_:
                feature_name.append("C" + str(idx - 13))
            feature_name.append("label")
            yield zip(feature_name, [dense_feature] + sparse_feature + [label])

        return reader