activation_cudnn_op.cu.cc 7.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/cudnn_desc.h"

namespace paddle {
namespace operators {
using framework::Tensor;
using platform::ActivationDescriptor;
using platform::TensorDescriptor;
using platform::CUDADeviceContext;

template <typename T>
struct CudnnActivationFunctor {
  using ELEMENT_TYPE = T;
  CudnnActivationFunctor(const CUDADeviceContext& ctx, const T& c,
                         const cudnnActivationMode_t& m)
      : ctx_(ctx), coef_(c), mode_(m) {}
  void operator()(const Tensor& x, Tensor* out) {
    ActivationDescriptor act_desc;
    act_desc.set(mode_, coef_);
    TensorDescriptor x_desc, out_desc;
    x_desc.set(x);
    out_desc.set(detail::Ref(out));
    PADDLE_ENFORCE(platform::dynload::cudnnActivationForward(
        ctx_.cudnn_handle(), act_desc.desc(),
        platform::CudnnDataType<T>::kOne(), x_desc.desc(), x.data<T>(),
        platform::CudnnDataType<T>::kZero(), out_desc.desc(),
        out->mutable_data<T>(ctx_.GetPlace())));
  }
  const CUDADeviceContext& ctx_;
  const T coef_;
  const cudnnActivationMode_t mode_;
};

template <typename T>
struct CudnnActivationGradFunctor {
  using ELEMENT_TYPE = T;
  CudnnActivationGradFunctor(const CUDADeviceContext& ctx, const T& c,
                             const cudnnActivationMode_t& m)
      : ctx_(ctx), coef_(c), mode_(m) {}
  void operator()(const Tensor& x, const Tensor& out, const Tensor dout,
                  Tensor* dx) {
    ActivationDescriptor act_desc;
    act_desc.set(mode_, coef_);
    TensorDescriptor x_desc, out_desc, dout_desc, dx_desc;
    x_desc.set(x);
    out_desc.set(out);
    dout_desc.set(dout);
    dx_desc.set(detail::Ref(dx));
    PADDLE_ENFORCE(platform::dynload::cudnnActivationBackward(
        ctx_.cudnn_handle(), act_desc.desc(),
        platform::CudnnDataType<T>::kOne(), out_desc.desc(), out.data<T>(),
        dout_desc.desc(), dout.data<T>(), x_desc.desc(), x.data<T>(),
        platform::CudnnDataType<T>::kZero(), dx_desc.desc(),
        dx->mutable_data<T>(ctx_.GetPlace())));
  }
  const CUDADeviceContext& ctx_;
  const T coef_;
  const cudnnActivationMode_t mode_;
};

template <typename T>
struct CudnnReluFunctor : public CudnnActivationFunctor<T> {
  explicit CudnnReluFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_RELU) {}
};
template <typename T>
struct CudnnReluGradFunctor : public CudnnActivationGradFunctor<T> {
  explicit CudnnReluGradFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_RELU) {}

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

template <typename T>
struct CudnnRelu6Functor : public CudnnActivationFunctor<T> {
  explicit CudnnRelu6Functor(const CUDADeviceContext& ctx)
      : CudnnActivationFunctor<T>(ctx, 6.0, CUDNN_ACTIVATION_CLIPPED_RELU) {}
};
template <typename T>
struct CudnnRelu6GradFunctor : public CudnnActivationGradFunctor<T> {
  explicit CudnnRelu6GradFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationGradFunctor<T>(ctx, 6.0, CUDNN_ACTIVATION_CLIPPED_RELU) {
  }

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

template <typename T>
struct CudnnSigmoidFunctor : public CudnnActivationFunctor<T> {
  explicit CudnnSigmoidFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_SIGMOID) {}
};
template <typename T>
struct CudnnSigmoidGradFunctor : public CudnnActivationGradFunctor<T> {
  explicit CudnnSigmoidGradFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_SIGMOID) {}

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

template <typename T>
struct CudnnTanhFunctor : public CudnnActivationFunctor<T> {
  explicit CudnnTanhFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_TANH) {}
};
template <typename T>
struct CudnnTanhGradFunctor : public CudnnActivationGradFunctor<T> {
  explicit CudnnTanhGradFunctor(const CUDADeviceContext& ctx)
      : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_TANH) {}

  static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

template <typename Functor>
class CudnnActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<CUDADeviceContext>();
    Functor functor(dev_ctx);
    functor(detail::Ref(X), Out);
  }
};

template <typename Functor>
class CudnnActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    static_assert(Functor::FwdDeps() == kDepOut, "Forward deps must be Out.");

    const framework::Tensor *X, *Out, *dOut;
    X = Out = dOut = nullptr;
    framework::Tensor* dX = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<CUDADeviceContext>();
    Functor functor(dev_ctx);
    functor(detail::Ref(X), detail::Ref(Out), detail::Ref(dOut), dX);
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

#define FOR_EACH_CUDNN_OP_FUNCTOR(__macro)                  \
  __macro(relu, CudnnReluFunctor, CudnnReluGradFunctor);    \
  __macro(relu6, CudnnRelu6Functor, CudnnRelu6GradFunctor); \
  __macro(sigmoid, CudnnTanhFunctor, CudnnTanhGradFunctor); \
  __macro(tanh, CudnnTanhFunctor, CudnnTanhGradFunctor)

#define REGISTER_ACTIVATION_CUDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, CUDNN, plat::CUDAPlace,                    \
                     ops::CudnnActivationKernel<ops::functor<float>>,     \
                     ops::CudnnActivationKernel<ops::functor<double>>);   \
  REGISTER_OP_KERNEL(                                                     \
      act_type##_grad, CUDNN, plat::CUDAPlace,                            \
      ops::CudnnActivationGradKernel<ops::grad_functor<float>>,           \
      ops::CudnnActivationGradKernel<ops::grad_functor<double>>);

FOR_EACH_CUDNN_OP_FUNCTOR(REGISTER_ACTIVATION_CUDNN_KERNEL);