trt_test_helper.h 5.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>

#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

DEFINE_bool(use_tensorrt, true, "Test the performance of TensorRT engine.");
DEFINE_string(prog_filename, "", "Name of model file.");
DEFINE_string(param_filename, "", "Name of parameters file.");

template <typename ConfigType>
void SetConfig(ConfigType* config, std::string model_dir, bool use_gpu,
               bool use_tensorrt = false, int batch_size = -1) {
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    config->prog_file = model_dir + "/" + FLAGS_prog_filename;
    config->param_file = model_dir + "/" + FLAGS_param_filename;
  } else {
    config->model_dir = model_dir;
  }
  if (use_gpu) {
    config->use_gpu = true;
    config->device = 0;
    config->fraction_of_gpu_memory = 0.15;
  }
}

template <>
void SetConfig<AnalysisConfig>(AnalysisConfig* config, std::string model_dir,
                               bool use_gpu, bool use_tensorrt,
                               int batch_size) {
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    config->SetModel(model_dir + "/" + FLAGS_prog_filename,
                     model_dir + "/" + FLAGS_param_filename);
  } else {
    config->SetModel(model_dir);
  }
  if (use_gpu) {
    config->EnableUseGpu(100, 0);
    if (use_tensorrt) {
      config->EnableTensorRtEngine(1 << 10, batch_size, 3,
                                   AnalysisConfig::Precision::kFloat32, false);
      config->pass_builder()->DeletePass("conv_bn_fuse_pass");
      config->pass_builder()->DeletePass("fc_fuse_pass");
      config->pass_builder()->TurnOnDebug();
    } else {
66
      config->EnableCUDNN();
X
xiexionghang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      config->SwitchIrOptim();
    }
  }
}

void profile(std::string model_dir, bool use_analysis, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
  }

  std::vector<std::vector<PaddleTensor>> outputs;
  if (use_analysis || use_tensorrt) {
    AnalysisConfig config;
    config.EnableUseGpu(100, 0);
    config.pass_builder()->TurnOnDebug();
    SetConfig<AnalysisConfig>(&config, model_dir, true, use_tensorrt,
                              FLAGS_batch_size);
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, true);
  } else {
    NativeConfig config;
    SetConfig<NativeConfig>(&config, model_dir, true, false);
    TestPrediction(reinterpret_cast<PaddlePredictor::Config*>(&config),
                   inputs_all, &outputs, FLAGS_num_threads, false);
  }
}

void compare(std::string model_dir, bool use_tensorrt) {
  std::vector<std::vector<PaddleTensor>> inputs_all;
  if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
    SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                      FLAGS_param_filename);
  } else {
    SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "");
  }

  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config),
      inputs_all);
}

void compare_continuous_input(std::string model_dir, bool use_tensorrt) {
  AnalysisConfig analysis_config;
  SetConfig<AnalysisConfig>(&analysis_config, model_dir, true, use_tensorrt,
                            FLAGS_batch_size);
  auto config =
      reinterpret_cast<const PaddlePredictor::Config*>(&analysis_config);
  auto native_pred = CreateTestPredictor(config, false);
  auto analysis_pred = CreateTestPredictor(config, true);
  for (int i = 0; i < 20; i++) {
    std::vector<std::vector<PaddleTensor>> inputs_all;
    if (!FLAGS_prog_filename.empty() && !FLAGS_param_filename.empty()) {
      SetFakeImageInput(&inputs_all, model_dir, true, FLAGS_prog_filename,
                        FLAGS_param_filename, nullptr, i);
    } else {
      SetFakeImageInput(&inputs_all, model_dir, false, "__model__", "", nullptr,
                        i);
    }
    CompareNativeAndAnalysis(native_pred.get(), analysis_pred.get(),
                             inputs_all);
  }
}

}  // namespace inference
}  // namespace paddle