full_pascalvoc_test_preprocess.py 10.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import xml.etree.ElementTree
X
xiexionghang 已提交
16 17 18 19 20 21 22 23 24
from PIL import Image
import numpy as np
import os
import sys
from paddle.dataset.common import download
import tarfile
import StringIO
import hashlib
import tarfile
25
import argparse
X
xiexionghang 已提交
26 27 28 29 30 31 32

DATA_URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar"
DATA_DIR = os.path.expanduser("~/.cache/paddle/dataset/pascalvoc/")
TAR_FILE = "VOCtest_06-Nov-2007.tar"
TAR_PATH = os.path.join(DATA_DIR, TAR_FILE)
RESIZE_H = 300
RESIZE_W = 300
33 34
MEAN_VALUE = [127.5, 127.5, 127.5]
AP_VERSION = '11point'
X
xiexionghang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
DATA_OUT = 'pascalvoc_full.bin'
DATA_OUT_PATH = os.path.join(DATA_DIR, DATA_OUT)
BIN_TARGETHASH = "f6546cadc42f5ff13178b84ed29b740b"
TAR_TARGETHASH = "b6e924de25625d8de591ea690078ad9f"
TEST_LIST_KEY = "VOCdevkit/VOC2007/ImageSets/Main/test.txt"
BIN_FULLSIZE = 5348678856


def preprocess(img):
    img_width, img_height = img.size
    img = img.resize((RESIZE_W, RESIZE_H), Image.ANTIALIAS)
    img = np.array(img)
    # HWC to CHW
    if len(img.shape) == 3:
        img = np.swapaxes(img, 1, 2)
        img = np.swapaxes(img, 1, 0)
    # RBG to BGR
    img = img[[2, 1, 0], :, :]
    img = img.astype('float32')
54
    img_mean = np.array(MEAN_VALUE)[:, np.newaxis, np.newaxis].astype('float32')
X
xiexionghang 已提交
55 56 57 58 59
    img -= img_mean
    img = img * 0.007843
    return img


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def convert_pascalvoc_local2bin(args):
    data_dir = os.path.expanduser(args.data_dir)
    label_fpath = os.path.join(data_dir, args.label_file)
    flabel = open(label_fpath)
    label_list = [line.strip() for line in flabel]

    img_annotation_list_path = os.path.join(data_dir, args.img_annotation_list)
    flist = open(img_annotation_list_path)
    lines = [line.strip() for line in flist]

    output_file_path = os.path.join(data_dir, args.output_file)
    f1 = open(output_file_path, "w+b")
    f1.seek(0)
    image_nums = len(lines)
    f1.write(np.array(image_nums).astype('int64').tobytes())

    boxes = []
    lbls = []
    difficults = []
    object_nums = []

    for line in lines:
        image_path, label_path = line.split()
        image_path = os.path.join(data_dir, image_path)
        label_path = os.path.join(data_dir, label_path)

        im = Image.open(image_path)
        if im.mode == 'L':
            im = im.convert('RGB')
        im_width, im_height = im.size

        im = preprocess(im)
        np_im = np.array(im)
        f1.write(np_im.astype('float32').tobytes())

        # layout: label | xmin | ymin | xmax | ymax | difficult
        bbox_labels = []
        root = xml.etree.ElementTree.parse(label_path).getroot()

        objects = root.findall('object')
        objects_size = len(objects)
        object_nums.append(objects_size)

        for object in objects:
            bbox_sample = []
            # start from 1
            bbox_sample.append(
                float(label_list.index(object.find('name').text)))
            bbox = object.find('bndbox')
            difficult = float(object.find('difficult').text)
            bbox_sample.append(float(bbox.find('xmin').text) / im_width)
            bbox_sample.append(float(bbox.find('ymin').text) / im_height)
            bbox_sample.append(float(bbox.find('xmax').text) / im_width)
            bbox_sample.append(float(bbox.find('ymax').text) / im_height)
            bbox_sample.append(difficult)
            bbox_labels.append(bbox_sample)

        bbox_labels = np.array(bbox_labels)
        if len(bbox_labels) == 0: continue

        lbls.extend(bbox_labels[:, 0])
        boxes.extend(bbox_labels[:, 1:5])
        difficults.extend(bbox_labels[:, -1])

    f1.write(np.array(object_nums).astype('uint64').tobytes())
    f1.write(np.array(lbls).astype('int64').tobytes())
    f1.write(np.array(boxes).astype('float32').tobytes())
    f1.write(np.array(difficults).astype('int64').tobytes())
    f1.close()

    object_nums_sum = sum(object_nums)
    target_size = 8 + image_nums * 3 * args.resize_h * args.resize_h * 4 + image_nums * 8 + object_nums_sum * (
        8 + 4 * 4 + 8)
    if (os.path.getsize(output_file_path) == target_size):
        print("Success! \nThe output binary file can be found at: ",
              output_file_path)
    else:
        print("Conversion failed!")


X
xiexionghang 已提交
140 141 142 143 144 145 146 147
def print_processbar(done_percentage):
    done_filled = done_percentage * '='
    empty_filled = (100 - done_percentage) * ' '
    sys.stdout.write("\r[%s%s]%d%%" %
                     (done_filled, empty_filled, done_percentage))
    sys.stdout.flush()


148
def convert_pascalvoc_tar2bin(tar_path, data_out_path):
X
xiexionghang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    print("Start converting ...\n")
    images = {}
    gt_labels = {}
    boxes = []
    lbls = []
    difficults = []
    object_nums = []

    # map label to number (index)
    label_list = [
        "background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
        "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
        "motorbike", "person", "pottedplant", "sheep", "sofa", "train",
        "tvmonitor"
    ]
    print_processbar(0)
    #read from tar file and write to bin
    tar = tarfile.open(tar_path, "r")
    f_test = tar.extractfile(TEST_LIST_KEY).read()
    lines = f_test.split('\n')
    del lines[-1]
170 171
    image_nums = len(lines)
    per_percentage = image_nums / 100
X
xiexionghang 已提交
172 173 174

    f1 = open(data_out_path, "w+b")
    f1.seek(0)
175
    f1.write(np.array(image_nums).astype('int64').tobytes())
X
xiexionghang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    for tarInfo in tar:
        if tarInfo.isfile():
            tmp_filename = tarInfo.name
            name_arr = tmp_filename.split('/')
            name_prefix = name_arr[-1].split('.')[0]
            if name_arr[-2] == 'JPEGImages' and name_prefix in lines:
                images[name_prefix] = tar.extractfile(tarInfo).read()
            if name_arr[-2] == 'Annotations' and name_prefix in lines:
                gt_labels[name_prefix] = tar.extractfile(tarInfo).read()

    for line_idx, name_prefix in enumerate(lines):
        im = Image.open(StringIO.StringIO(images[name_prefix]))
        if im.mode == 'L':
            im = im.convert('RGB')
        im_width, im_height = im.size

        im = preprocess(im)
        np_im = np.array(im)
        f1.write(np_im.astype('float32').tobytes())

        # layout: label | xmin | ymin | xmax | ymax | difficult
        bbox_labels = []
198
        root = xml.etree.ElementTree.fromstring(gt_labels[name_prefix])
X
xiexionghang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

        objects = root.findall('object')
        objects_size = len(objects)
        object_nums.append(objects_size)

        for object in objects:
            bbox_sample = []
            bbox_sample.append(
                float(label_list.index(object.find('name').text)))
            bbox = object.find('bndbox')
            difficult = float(object.find('difficult').text)
            bbox_sample.append(float(bbox.find('xmin').text) / im_width)
            bbox_sample.append(float(bbox.find('ymin').text) / im_height)
            bbox_sample.append(float(bbox.find('xmax').text) / im_width)
            bbox_sample.append(float(bbox.find('ymax').text) / im_height)
            bbox_sample.append(difficult)
            bbox_labels.append(bbox_sample)

        bbox_labels = np.array(bbox_labels)
        if len(bbox_labels) == 0: continue
        lbls.extend(bbox_labels[:, 0])
        boxes.extend(bbox_labels[:, 1:5])
        difficults.extend(bbox_labels[:, -1])

        if line_idx % per_percentage:
            print_processbar(line_idx / per_percentage)

    f1.write(np.array(object_nums).astype('uint64').tobytes())
    f1.write(np.array(lbls).astype('int64').tobytes())
    f1.write(np.array(boxes).astype('float32').tobytes())
    f1.write(np.array(difficults).astype('int64').tobytes())
    f1.close()
    print_processbar(100)
    print("Conversion finished!\n")


def download_pascalvoc(data_url, data_dir, tar_targethash, tar_path):
    print("Downloading pascalvcoc test set...")
    download(data_url, data_dir, tar_targethash)
    if not os.path.exists(tar_path):
        print("Failed in downloading pascalvoc test set. URL %s\n" % data_url)
    else:
        tmp_hash = hashlib.md5(open(tar_path, 'rb').read()).hexdigest()
        if tmp_hash != tar_targethash:
            print("Downloaded test set is broken, removing ...\n")
        else:
            print("Downloaded successfully. Path: %s\n" % tar_path)


def run_convert():
    try_limit = 2
    retry = 0
    while not (os.path.exists(DATA_OUT_PATH) and
               os.path.getsize(DATA_OUT_PATH) == BIN_FULLSIZE and BIN_TARGETHASH
               == hashlib.md5(open(DATA_OUT_PATH, 'rb').read()).hexdigest()):
        if os.path.exists(DATA_OUT_PATH):
            sys.stderr.write(
                "The existing binary file is broken. It is being removed...\n")
            os.remove(DATA_OUT_PATH)
        if retry < try_limit:
            retry = retry + 1
        else:
            download_pascalvoc(DATA_URL, DATA_DIR, TAR_TARGETHASH, TAR_PATH)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            convert_pascalvoc_tar2bin(TAR_PATH, DATA_OUT_PATH)
    print("Success!\nThe binary file can be found at %s\n" % DATA_OUT_PATH)


def main_pascalvoc_preprocess(args):
    parser = argparse.ArgumentParser(
        description="Convert the full pascalvoc val set or local data to binary file."
    )
    parser.add_argument(
        '--choice', choices=['local', 'VOC_test_2007'], required=True)
    parser.add_argument(
        "--data_dir",
        default="/home/li/AIPG-Paddle/paddle/build/third_party/inference_demo/int8v2/pascalvoc_small",
        type=str,
        help="Dataset root directory")
    parser.add_argument(
        "--img_annotation_list",
        type=str,
        default="test_100.txt",
        help="A file containing the image file path and relevant annotation file path"
    )
    parser.add_argument(
        "--label_file",
        type=str,
        default="label_list",
        help="List the labels in the same sequence as denoted in the annotation file"
    )
    parser.add_argument(
        "--output_file",
        type=str,
        default="pascalvoc_small.bin",
        help="File path of the output binary file")
    parser.add_argument("--resize_h", type=int, default=RESIZE_H)
    parser.add_argument("--resize_w", type=int, default=RESIZE_W)
    parser.add_argument("--mean_value", type=str, default=MEAN_VALUE)
    parser.add_argument("--ap_version", type=str, default=AP_VERSION)
    args = parser.parse_args()
    if args.choice == 'local':
        convert_pascalvoc_local2bin(args)
    elif args.choice == 'VOC_test_2007':
        run_convert()
X
xiexionghang 已提交
303 304 305


if __name__ == "__main__":
306
    main_pascalvoc_preprocess(sys.argv)