full_ILSVRC2012_val_preprocess.py 6.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#   copyright (c) 2019 paddlepaddle authors. all rights reserved.
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import hashlib
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
from PIL import Image
import math
from paddle.dataset.common import download
import tarfile
import StringIO

random.seed(0)
np.random.seed(0)

DATA_DIM = 224
SIZE_FLOAT32 = 4
SIZE_INT64 = 8
FULL_SIZE_BYTES = 30106000008
FULL_IMAGES = 50000
TARGET_HASH = '22d2e0008dca693916d9595a5ea3ded8'
FOLDER_NAME = "ILSVRC2012/"
VALLIST_TAR_NAME = "ILSVRC2012/val_list.txt"
CHUNK_SIZE = 8192

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


def process_image(img):
    img = resize_short(img, target_size=256)
    img = crop_image(img, target_size=DATA_DIM, center=True)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
    img -= img_mean
    img /= img_std
    return img


def download_concat(cache_folder, zip_path):
    data_urls = []
    data_md5s = []
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
    )
    data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
    data_urls.append(
        'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
    )
    data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
    file_names = []
    print("Downloading full ImageNet Validation dataset ...")
    for i in range(0, len(data_urls)):
        download(data_urls[i], cache_folder, data_md5s[i])
        file_name = os.path.join(cache_folder, data_urls[i].split('/')[-1])
        file_names.append(file_name)
        print("Downloaded part {0}\n".format(file_name))
    if not os.path.exists(zip_path):
        with open(zip_path, "w+") as outfile:
            for fname in file_names:
                with open(fname) as infile:
                    outfile.write(infile.read())


def print_processbar(done_percentage):
    done_filled = done_percentage * '='
    empty_filled = (100 - done_percentage) * ' '
    sys.stdout.write("\r[%s%s]%d%%" %
                     (done_filled, empty_filled, done_percentage))
    sys.stdout.flush()


def check_integrity(filename, target_hash):
    print('\nThe binary file exists. Checking file integrity...\n')
    md = hashlib.md5()
    count = 0
    onepart = FULL_SIZE_BYTES / CHUNK_SIZE / 100
    with open(filename) as ifs:
        while True:
            buf = ifs.read(CHUNK_SIZE)
            if count % onepart == 0:
                done = count / onepart
                print_processbar(done)
            count = count + 1
            if not buf:
                break
            md.update(buf)
    hash1 = md.hexdigest()
    if hash1 == target_hash:
        return True
    else:
        return False


def convert(tar_file, output_file):
    print('Converting 50000 images to binary file ...\n')
    tar = tarfile.open(name=tar_file, mode='r:gz')

    print_processbar(0)

    dataset = {}
    for tarInfo in tar:
        if tarInfo.isfile() and tarInfo.name != VALLIST_TAR_NAME:
            dataset[tarInfo.name] = tar.extractfile(tarInfo).read()

    with open(output_file, "w+b") as ofs:
        ofs.seek(0)
        num = np.array(int(FULL_IMAGES)).astype('int64')
        ofs.write(num.tobytes())

        per_percentage = FULL_IMAGES / 100

        idx = 0
        for imagedata in dataset.values():
            img = Image.open(StringIO.StringIO(imagedata))
            img = process_image(img)
            np_img = np.array(img)
            ofs.write(np_img.astype('float32').tobytes())
            if idx % per_percentage == 0:
                print_processbar(idx / per_percentage)
            idx = idx + 1

        val_info = tar.getmember(VALLIST_TAR_NAME)
        val_list = tar.extractfile(val_info).read()

        lines = val_list.split('\n')
        val_dict = {}
        for line_idx, line in enumerate(lines):
            if line_idx == FULL_IMAGES:
                break
            name, label = line.split()
            val_dict[name] = label

        for img_name in dataset.keys():
            remove_len = (len(FOLDER_NAME))
            img_name_prim = img_name[remove_len:]
            label = val_dict[img_name_prim]
            label_int = (int)(label)
            np_label = np.array(label_int)
            ofs.write(np_label.astype('int64').tobytes())
        print_processbar(100)
    tar.close()
    print("Conversion finished.")


def run_convert():
    print('Start to download and convert 50000 images to binary file...')
    cache_folder = os.path.expanduser('~/.cache/paddle/dataset/int8/download')
    zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz.partaa')
    output_file = os.path.join(cache_folder, 'int8_full_val.bin')
    retry = 0
    try_limit = 3

    while not (os.path.exists(output_file) and
               os.path.getsize(output_file) == FULL_SIZE_BYTES and
               check_integrity(output_file, TARGET_HASH)):
        if os.path.exists(output_file):
            sys.stderr.write(
                "\n\nThe existing binary file is broken. Start to generate new one...\n\n".
                format(output_file))
            os.remove(output_file)
        if retry < try_limit:
            retry = retry + 1
        else:
            raise RuntimeError(
                "Can not convert the dataset to binary file with try limit {0}".
                format(try_limit))
        download_concat(cache_folder, zip_path)
        convert(zip_path, output_file)
    print("\nSuccess! The binary file can be found at {0}".format(output_file))


if __name__ == '__main__':
    run_convert()