analyzer_text_classification_tester.cc 4.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

struct DataReader {
  explicit DataReader(const std::string &path)
      : file(new std::ifstream(path)) {}

  bool NextBatch(std::vector<PaddleTensor> *input, int batch_size) {
    PADDLE_ENFORCE_EQ(batch_size, 1);
    std::string line;
    PaddleTensor tensor;
    tensor.dtype = PaddleDType::INT64;
    tensor.lod.emplace_back(std::vector<size_t>({0}));
    std::vector<int64_t> data;

    for (int i = 0; i < batch_size; i++) {
      if (!std::getline(*file, line)) return false;
      inference::split_to_int64(line, ' ', &data);
    }
    tensor.lod.front().push_back(data.size());

    tensor.data.Resize(data.size() * sizeof(int64_t));
    CHECK(tensor.data.data() != nullptr);
    CHECK(data.data() != nullptr);
    memcpy(tensor.data.data(), data.data(), data.size() * sizeof(int64_t));
    tensor.shape.push_back(data.size());
    tensor.shape.push_back(1);
    input->assign({tensor});
    return true;
  }

  std::unique_ptr<std::ifstream> file;
};

void SetConfig(AnalysisConfig *cfg) {
  cfg->SetModel(FLAGS_infer_model);
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  std::vector<PaddleTensor> input_slots;
  DataReader reader(FLAGS_infer_data);
  int num_batches = 0;
  while (reader.NextBatch(&input_slots, FLAGS_batch_size)) {
    (*inputs).emplace_back(input_slots);
    ++num_batches;
    if (!FLAGS_test_all_data) return;
  }
  LOG(INFO) << "total number of samples: " << num_batches * FLAGS_batch_size;
}

// Easy for profiling independently.
TEST(Analyzer_Text_Classification, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  cfg.SwitchIrDebug();
  std::vector<std::vector<PaddleTensor>> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1) {
    // Get output
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    LOG(INFO) << "get outputs " << outputs.back().size();
    for (auto &output : outputs.back()) {
      LOG(INFO) << "output.shape: " << to_string(output.shape);
      // no lod ?
      CHECK_EQ(output.lod.size(), 0UL);
      LOG(INFO) << "output.dtype: " << output.dtype;
      std::stringstream ss;
      int num_data = 1;
      for (auto i : output.shape) {
        num_data *= i;
      }

      for (int i = 0; i < num_data; i++) {
        ss << static_cast<float *>(output.data.data())[i] << " ";
      }
      LOG(INFO) << "output.data summary: " << ss.str();
      // one batch ends
    }
  }
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_Text_Classification, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  cfg.EnableMemoryOptim();

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

// Compare Deterministic result
TEST(Analyzer_Text_Classification, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  // Enable embedding_fc_lstm_fuse_pass (disabled by default)
  cfg.pass_builder()->InsertPass(2, "embedding_fc_lstm_fuse_pass");

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

}  // namespace inference
}  // namespace paddle