test_tensorrt.cc 5.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "NvInfer.h"
#include "paddle/fluid/platform/dynload/tensorrt.h"

namespace dy = paddle::platform::dynload;

class Logger : public nvinfer1::ILogger {
 public:
  void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
    switch (severity) {
      case Severity::kINFO:
        LOG(INFO) << msg;
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }
};

class ScopedWeights {
 public:
  explicit ScopedWeights(float value) : value_(value) {
    w.type = nvinfer1::DataType::kFLOAT;
    w.values = &value_;
    w.count = 1;
  }
  const nvinfer1::Weights& get() { return w; }

 private:
  float value_;
  nvinfer1::Weights w;
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
  return static_cast<nvinfer1::IBuilder*>(
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
}
nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
  return static_cast<nvinfer1::IRuntime*>(
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
}

const char* kInputTensor = "input";
const char* kOutputTensor = "output";

// Creates a network to compute y = 2x + 3
nvinfer1::IHostMemory* CreateNetwork() {
  Logger logger;
  // Create the engine.
  nvinfer1::IBuilder* builder = createInferBuilder(&logger);
  ScopedWeights weights(2.);
  ScopedWeights bias(3.);

  nvinfer1::INetworkDefinition* network = builder->createNetwork();
  // Add the input
  auto input = network->addInput(kInputTensor, nvinfer1::DataType::kFLOAT,
                                 nvinfer1::DimsCHW{1, 1, 1});
  EXPECT_NE(input, nullptr);
  // Add the hidden layer.
  auto layer = network->addFullyConnected(*input, 1, weights.get(), bias.get());
  EXPECT_NE(layer, nullptr);
  // Mark the output.
  auto output = layer->getOutput(0);
  output->setName(kOutputTensor);
  network->markOutput(*output);
  // Build the engine.
  builder->setMaxBatchSize(1);
  builder->setMaxWorkspaceSize(1 << 10);
  auto engine = builder->buildCudaEngine(*network);
  EXPECT_NE(engine, nullptr);
  // Serialize the engine to create a model, then close.
  nvinfer1::IHostMemory* model = engine->serialize();
  network->destroy();
  engine->destroy();
  builder->destroy();
  return model;
}

void Execute(nvinfer1::IExecutionContext* context, const float* input,
             float* output) {
  const nvinfer1::ICudaEngine& engine = context->getEngine();
  // Two binds, input and output
  ASSERT_EQ(engine.getNbBindings(), 2);
  const int input_index = engine.getBindingIndex(kInputTensor);
  const int output_index = engine.getBindingIndex(kOutputTensor);
  // Create GPU buffers and a stream
  void* buffers[2];
  ASSERT_EQ(0, cudaMalloc(&buffers[input_index], sizeof(float)));
  ASSERT_EQ(0, cudaMalloc(&buffers[output_index], sizeof(float)));
  cudaStream_t stream;
  ASSERT_EQ(0, cudaStreamCreate(&stream));
  // Copy the input to the GPU, execute the network, and copy the output back.
  ASSERT_EQ(0, cudaMemcpyAsync(buffers[input_index], input, sizeof(float),
                               cudaMemcpyHostToDevice, stream));
  context->enqueue(1, buffers, stream, nullptr);
  ASSERT_EQ(0, cudaMemcpyAsync(output, buffers[output_index], sizeof(float),
                               cudaMemcpyDeviceToHost, stream));
  cudaStreamSynchronize(stream);

  // Release the stream and the buffers
  cudaStreamDestroy(stream);
  ASSERT_EQ(0, cudaFree(buffers[input_index]));
  ASSERT_EQ(0, cudaFree(buffers[output_index]));
}

TEST(TensorrtTest, BasicFunction) {
  // Create the network serialized model.
  nvinfer1::IHostMemory* model = CreateNetwork();

  // Use the model to create an engine and an execution context.
  Logger logger;
  nvinfer1::IRuntime* runtime = createInferRuntime(&logger);
  nvinfer1::ICudaEngine* engine =
      runtime->deserializeCudaEngine(model->data(), model->size(), nullptr);
  model->destroy();
  nvinfer1::IExecutionContext* context = engine->createExecutionContext();

  // Execute the network.
  float input = 1234;
  float output;
  Execute(context, &input, &output);
  EXPECT_EQ(output, input * 2 + 3);

  // Destroy the engine.
  context->destroy();
  engine->destroy();
  runtime->destroy();
}