trt_plugin.h 4.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <NvInfer.h>
#include <cstring>
#include <unordered_map>
#include <utility>
#include <vector>

#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_utils.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(profile);

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

class PluginTensorRT;

typedef std::function<PluginTensorRT*(const void*, size_t)>
    PluginDeserializeFunc;

typedef std::function<PluginTensorRT*(void)> PluginConstructFunc;

class PluginTensorRT : public nvinfer1::IPluginExt {
 public:
  PluginTensorRT() {}
  // It was used for TensorRT deserialization.
  // It should not be called by users.
  PluginTensorRT(const void* serialized_data, size_t length) {}
  virtual ~PluginTensorRT() {}

  nvinfer1::Dims const& getInputDims(int index) const {
    return input_dims_.at(index);
  }
  size_t getMaxBatchSize() const { return max_batch_size_; }
  nvinfer1::DataType getDataType() const { return data_type_; }
  nvinfer1::PluginFormat getDataFormat() const { return data_format_; }
  virtual const char* getPluginVersion() const { return "1"; }

  void AddInput(nvinfer1::ITensor* input) { inputs_.push_back(input); }
  std::vector<nvinfer1::ITensor*>& GetInputs() { return inputs_; }

  virtual nvinfer1::IPluginExt* clone() const = 0;
  virtual const char* getPluginType() const = 0;

  // Following functions are inherit from nvinfer1::IPluginExt
  // Get the number of outputs from the layer
  int getNbOutputs() const { return 1; }
  // Get the dimension of an output tensor
  virtual nvinfer1::Dims getOutputDimensions(int index,
                                             const nvinfer1::Dims* input_dims,
                                             int num_inputs) = 0;
  // Find the workspace size required by the layer
  size_t getWorkspaceSize(int) const override { return 0; }

  // Initialize the layer for execution.
  // This is called when the engine is created.
  int initialize() override { return 0; }
  // Shutdown the layer. This is called when the engine is destroyed
  void terminate() override {}
  // Execute the layer
  virtual int enqueue(int batch_size, const void* const* inputs, void** outputs,
                      void* workspace, cudaStream_t stream) = 0;

  // Find the size of the serialization buffer required
  virtual size_t getSerializationSize() = 0;
  // Serialize the layer config to buffer.
  // TensorRT will call this func to serialize the configuration of TensorRT
  // engine. It should not be called by users.
  virtual void serialize(void* buffer) = 0;

  // Check format support. The default is FLOAT32 and NCHW.
  bool supportsFormat(nvinfer1::DataType type,
                      nvinfer1::PluginFormat format) const override;
  // Configure the layer
  void configureWithFormat(const nvinfer1::Dims* input_dims, int num_inputs,
                           const nvinfer1::Dims* output_dims, int num_outputs,
                           nvinfer1::DataType type,
                           nvinfer1::PluginFormat format,
                           int max_batch_size) override;

 protected:
  // Deserialize input_dims, max_batch_size, data_type, data_format
  void deserializeBase(void const*& serial_data,  // NOLINT
                       size_t& serial_length);    // NOLINT
  size_t getBaseSerializationSize();
  // Serialize input_dims, max_batch_size, data_type, data_format
  void serializeBase(void*& buffer);  // NOLINT

  std::vector<nvinfer1::Dims> input_dims_;
  size_t max_batch_size_;
  nvinfer1::DataType data_type_;
  nvinfer1::PluginFormat data_format_;

  std::vector<nvinfer1::ITensor*> inputs_;
};

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle