prelu_op_plugin.cu 3.0 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <stdio.h>
#include <cassert>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
#include "paddle/fluid/operators/math/prelu.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

PReluPlugin *CreatePreluPluginDeserialize(const void *buffer, size_t length) {
  return new PReluPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("prelu_plugin", CreatePreluPluginDeserialize);

int PReluPlugin::initialize() {
  cudaMalloc(&p_gpu_weight_, sizeof(float) * weight_.size());
  cudaMemcpy(p_gpu_weight_, weight_.data(), weight_.size() * sizeof(float),
             cudaMemcpyHostToDevice);
37
  return 0;
X
xiexionghang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
}

nvinfer1::Dims PReluPlugin::getOutputDimensions(int index,
                                                const nvinfer1::Dims *inputDims,
                                                int nbInputs) {
  assert(nbInputs == 1);
  assert(index < this->getNbOutputs());
  nvinfer1::Dims const &input_dims = inputDims[0];
  nvinfer1::Dims output_dims = input_dims;
  return output_dims;
}

int PReluPlugin::enqueue(int batch_size, const void *const *inputs,
                         void **outputs, void *workspace, cudaStream_t stream) {
  // input dims is CHW.
  const auto &input_dims = this->getInputDims(0);
  const float *input = reinterpret_cast<const float *>(inputs[0]);
  // const float *alpha = reinterpret_cast<const float *>(alpha_.get().values);
  const float *alpha = p_gpu_weight_;
  float *output = reinterpret_cast<float **>(outputs)[0];

  std::vector<int> input_shape;
  input_shape.push_back(batch_size);
  for (int i = 0; i < input_dims.nbDims; i++) {
    input_shape.push_back(input_dims.d[i]);
  }

  if (mode_ == "channel") {
    operators::math::PreluChannelWiseDirectCUDAFunctor<float>
        prelu_channel_wise;
    prelu_channel_wise(stream, input, alpha, output, input_shape);
  } else if (mode_ == "element") {
    operators::math::PreluElementWiseDirectCUDAFunctor<float>
        prelu_element_wise;
    prelu_element_wise(stream, input, alpha, output, input_shape);
  } else {
    operators::math::PreluScalarDirectCUDAFunctor<float> prelu_scalar;
    prelu_scalar(stream, input, alpha, output, input_shape);
  }
  return cudaGetLastError() != cudaSuccess;
}

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle