engine.h 9.4 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
X
xiexionghang 已提交
19 20 21 22
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
23
#include <utility>
X
xiexionghang 已提交
24 25 26
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
27
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
X
xiexionghang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#include "paddle/fluid/inference/utils/singleton.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TRTInt8Calibrator;
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
44
 * protobuf model, another way is to manually construct the network.
X
xiexionghang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 */
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

 public:
  // Weight is model parameter.
  class Weight {
   public:
    Weight() = default;
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
    const nvinfer1::Weights& get() { return w_; }

    std::vector<int64_t> dims;

   private:
    nvinfer1::Weights w_;
  };

67 68 69 70 71
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global())
X
xiexionghang 已提交
72 73
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
74
        precision_(precision),
X
xiexionghang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        calibrator_(calibrator),
        device_id_(device_id),
        logger_(logger) {}

  ~TensorRTEngine() {}

  // TODO(Superjomn) implement it later when graph segmentation is supported.
  void Build(const DescType& paddle_model);

  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream);

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
    freshDeviceId();
    infer_builder_.reset(createInferBuilder(&logger_));
    infer_network_.reset(infer_builder_->createNetwork());
  }
94
  // After finishing adding ops, freeze this network and creates the execution
X
xiexionghang 已提交
95 96 97
  // environment.
  void FreezeNetwork();

98
  // Add an input and set its name, data type and dimension.
X
xiexionghang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);

  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
    freshDeviceId();
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size(),
        &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
  }

  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
  int GetDeviceId() { return device_id_; }
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
                                    int num_inputs, plugin::PluginTensorRT*);
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;

156 157 158 159 160 161 162 163 164 165
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
    weight_map[w_name + suffix] = std::move(w_tensor);
    suffix_counter += 1;
  }

X
xiexionghang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

 private:
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

  // the max batch size
  int max_batch_;
  // the runtime batch size
  static int runtime_batch_;
  // the max memory size the engine uses
  int max_workspace_;

185
  AnalysisConfig::Precision precision_;
X
xiexionghang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};

  int device_id_;
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;

  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
214 215
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
X
xiexionghang 已提交
216 217 218 219 220 221 222 223
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
};  // class TensorRTEngine

#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

224
// Add a layer__ into engine__ with args ARGS.
X
xiexionghang 已提交
225 226 227 228 229 230 231 232 233
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
234 235
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
X
xiexionghang 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248

class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

249 250 251 252 253 254
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, precision,
X
xiexionghang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
                                 calibrator, device_id, logger);
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle