ut_helper.h 8.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

#include <memory>
#include <string>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::mt19937 mt(100);
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

  TRTConvertValidation(int max_batch_size,
                       const std::unordered_set<std::string>& parameters,
                       framework::Scope& scope,  // NOLINT
                       int workspace_size = 1 << 10, bool if_add_batch = true)
      : parameters_(parameters),
        scope_(scope),
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
83
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size));
X
xiexionghang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    engine_->InitNetwork();
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims, true);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
    platform::CUDADeviceContext ctx(place_);

    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place_, ctx);
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
    // Init Fluid tensor.
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
    // There is no batchsize in ITensor's shape, but We should add it to
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);

    DeclVar(name, dim_vec);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);

    engine_->FreezeNetwork();

    // Declare outputs.
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
    cudaStreamSynchronize(stream_);
    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
          static_cast<void*>(tensor->mutable_data<float>(place_));
    }

    // Execute TRT.
    engine_->Execute(batch_size, &buffers, stream_);
    cudaStreamSynchronize(stream_);

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
    int index = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> trt_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);

      size_t fluid_out_size = fluid_outs[index].size();
      if (if_add_batch_ == true) {
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
      }

      for (size_t i = 0; i < fluid_out_size; i++) {
        // Loose the threshold for CI in different machine model.
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
      }
      index += 1;
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  platform::CUDAPlace place_;
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle