pool2d_op.cc 6.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/avg_pool_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

void DealCeilMode(const nvinfer1::Dims &input_shape, std::vector<int> ksize,
                  std::vector<int> strides, std::vector<int> paddings,
                  nvinfer1::DimsHW *pre_pad, nvinfer1::DimsHW *post_pad,
                  int input_dims) {
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
    VLOG(4)
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

    PADDLE_ENFORCE_EQ(input_dims, 3UL);

    bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
    std::string pool_type =
        boost::get<std::string>(op_desc.GetAttr("pooling_type"));
    std::vector<int> ksize =
        boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
    std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
    bool ceil_mode = boost::get<bool>(op_desc.GetAttr("ceil_mode"));

    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
    if (pool_type == "max") {
      nv_pool_type = nvinfer1::PoolingType::kMAX;
    } else if (pool_type == "avg") {
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
    } else {
      PADDLE_THROW("TensorRT unsupported pooling type!");
    }

    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
      auto *layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
      PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

    if (pool_type == "max") {
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, "pad layer in poolOp converter could not be created.");
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
      PADDLE_ENFORCE_NOT_NULL(pool_layer, "pool layer could not be created.");
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
      }
      plugin::AvgPoolPlugin *plugin = new plugin::AvgPoolPlugin(
          ceil_mode, ksize, strides, paddings, input_shape_v);
      auto *avg_pool_layer = engine_->AddPlugin(&input1, 1, plugin);
      layer = avg_pool_layer;
    }

    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);

    if (op_desc.HasAttr("out_scale")) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);