op_converter.h 8.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"

namespace paddle {
namespace inference {
namespace tensorrt {

using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW("unkown type");
  return TRT_DT::kINT32;
}

nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    "TensorRT' tensor input requires at least 2 dimensions");
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    "TensorRT' tensor input requires at most 4 dimensions");
  PADDLE_ENFORCE(shape.size() == 4UL || shape.size() == 2UL);
  if (shape.size() == 4UL)
    return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
  return nvinfer1::DimsCHW(shape[1], 1, 1);
}

}  // namespace // NOLINT

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}

  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
                          const framework::Scope& scope,
                          bool test_mode = false) {}

  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
    framework::OpDesc op_desc(op, nullptr);

    OpConverter* it{nullptr};

    if (op_desc.Type() == "mul") {
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        it = Registry<OpConverter>::Global().Lookup("fc");
      }
    }
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        PADDLE_ENFORCE(add_weight_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
        PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                                op_desc.Type());
      } else {
        PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
      }
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (op_desc.Type() == "depthwise_conv2d") {
      it = Registry<OpConverter>::Global().Lookup("conv2d");
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (!it) {
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                            op_desc.Type());
    it->SetEngine(engine);
    (*it)(op, scope, test_mode);
  }

  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
  void ConvertBlock(const framework::proto::BlockDesc& block,
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
    std::unique_lock<std::mutex> lk(mut_);
    for (int i = 0; i < block.ops_size(); i++) {
      const auto& op = block.ops(i);
      ConvertOp(op, parameters, scope, engine);
    }
  }

  // The scope  here should be inited with the parameter vars.
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
      auto var_shape = var->GetShape();

      engine->DeclareInput(
          input, FluidDataType2TRT(
                     var->Proto()->type().lod_tensor().tensor().data_type()),
          Vec2TRT_Dims(var_shape));
    }
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
    engine->ClearWeights();
  }

  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

  virtual ~OpConverter() {}

  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

 protected:
  bool test_mode_;

 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
  framework::Scope* scope_{nullptr};
  std::mutex mut_;
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

228 229 230
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
X
xiexionghang 已提交
231
      TouchConverterRegister_##op_type__();