fc_op.cc 5.8 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// Reorder the elements from istrides to ostrides, borrowed from TRT convert in
// tensorflow.
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/tensorrt/convert/convert_nodes.cc#L318
template <typename T>
void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
              T* odata, nvinfer1::DimsHW ostrides) {
  for (int h = 0; h < shape.h(); ++h) {
    for (int w = 0; w < shape.w(); ++w) {
      odata[h * ostrides.h() + w * ostrides.w()] =
          idata[h * istrides.h() + w * istrides.w()];
    }
  }
}
// indata c * k
// Reorder the data layout from CK to KC.
void ReorderCKtoKC(TensorRTEngine::Weight& iweights,  // NOLINT
                   TensorRTEngine::Weight* oweights) {
  int c = iweights.dims[0];
  int k = iweights.dims[1];
  oweights->dims.assign({k, c});
  nvinfer1::DimsHW istrides = {1, k};
  nvinfer1::DimsHW ostrides = {c, 1};
  Reorder2({k, c}, static_cast<float const*>(iweights.get().values), istrides,
           static_cast<float*>(const_cast<void*>(oweights->get().values)),
           ostrides);
}

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
    framework::OpDesc op_desc(op, nullptr);

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }

    // Declare inputs
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());

    // Declare weights
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
75
    // assigned from CPU memory, which can't be avoided.
X
xiexionghang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    float* weight_data = nullptr;
    bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
      float in_scale = boost::get<float>(op_desc.GetAttr("input_scale"));
      auto weight_scale =
          boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }

    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL);  // a matrix
    size_t n_output = Y_t->dims()[1];

    std::unique_ptr<framework::Tensor> tmp(new framework::LoDTensor());
    tmp->Resize(Y_t->dims());

    memcpy(tmp->mutable_data<float>(platform::CPUPlace()), weight_data,
           Y_t->dims()[0] * Y_t->dims()[1] * sizeof(float));
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
                                  static_cast<size_t>(Y_t->numel())};
    TensorRTEngine::Weight tmp_weight(nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(tmp->data<float>()),
                                      static_cast<size_t>(Y_t->numel()));
    weight.dims.assign({Y_t->dims()[0], Y_t->dims()[1]});
    tmp_weight.dims = weight.dims;

    // The data layout of TRT FC layer's weight is different from fluid's FC,
    // need to reorder the elements.
    ReorderCKtoKC(weight, &tmp_weight);

    // Currently, the framework can only handle one fluid op -> one TRT layer,
    // but fc fuses `mul` and `bias` (2 fluid ops), so here is a trick, just
    // handle `mul`, leave `add` as another layer.
    // DEBUG
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
      auto* b_v = scope.FindVar(op_desc.Input("Bias").front());
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};

    auto* layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected,
                                       *const_cast<nvinfer1::ITensor*>(X),
                                       n_output, tmp_weight.get(), bias.get());

134
    engine_->SetWeights(op_desc.Input(w_name).front(), std::move(tmp));
X
xiexionghang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    auto output_name = op_desc.Output("Out").front();

    RreplenishLayerAndOutput(layer, "fc", {output_name}, test_mode);
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
    }
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);