activation_op.cc 3.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class ActivationOpConverter : public OpConverter {
 public:
  ActivationOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
    VLOG(3)
        << "convert a fluid Activation op to tensorrt activation layer whose "
           "type is "
        << op_type_;
    const nvinfer1::ITensor* input_tensor =
        engine_->GetITensor(op_desc.Input("X")[0]);

    auto op_pair = ops.find(op_type_);
    if (op_pair == ops.end()) {
      PADDLE_THROW("Wrong activation op type!");
    }

    nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
        op_pair->second);
45 46 47 48 49 50 51 52 53

#if IS_TRT_VERSION_GE(5130)
    // max(alpha, min(beta, x))
    if (op_type_ == "relu6") {
      layer->setAlpha(0.);
      layer->setBeta(6.);
    }
#endif

X
xiexionghang 已提交
54 55 56 57
    auto output_name = op_desc.Output("Out")[0];

    RreplenishLayerAndOutput(layer, op_type_, {output_name}, test_mode);
    if (op_desc.HasAttr("out_scale")) {
58
#if IS_TRT_VERSION_GE(5130)
X
xiexionghang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
    }
  }

 protected:
  std::string op_type_;
  static const std::unordered_map<std::string, nvinfer1::ActivationType> ops;
};

const std::unordered_map<std::string, nvinfer1::ActivationType>
    ActivationOpConverter::ops = {
        {"relu", nvinfer1::ActivationType::kRELU},
        {"sigmoid", nvinfer1::ActivationType::kSIGMOID},
        {"tanh", nvinfer1::ActivationType::kTANH},
75 76 77
#if IS_TRT_VERSION_GE(5130)
        {"relu6", nvinfer1::ActivationType::kCLIP},
#endif
X
xiexionghang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
};

class ReluOpConverter : public ActivationOpConverter {
 public:
  ReluOpConverter() { op_type_ = "relu"; }
};

class SigmoidOpConverter : public ActivationOpConverter {
 public:
  SigmoidOpConverter() { op_type_ = "sigmoid"; }
};

class TanhOpConverter : public ActivationOpConverter {
 public:
  TanhOpConverter() { op_type_ = "tanh"; }
};

95 96 97 98 99
class Relu6OpConverter : public ActivationOpConverter {
 public:
  Relu6OpConverter() { op_type_ = "relu6"; }
};

X
xiexionghang 已提交
100 101 102 103 104 105 106
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
REGISTER_TRT_OP_CONVERTER(sigmoid, SigmoidOpConverter);
REGISTER_TRT_OP_CONVERTER(tanh, TanhOpConverter);
107
REGISTER_TRT_OP_CONVERTER(relu6, Relu6OpConverter);