paddle_pass_builder.cc 7.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
#include <glog/logging.h>

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
}

void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

const std::vector<std::string> kTRTSubgraphPasses({
74
  "conv_affine_channel_fuse_pass",                 //
X
xiexionghang 已提交
75
      "conv_eltwiseadd_affine_channel_fuse_pass",  //
76
      "shuffle_channel_detect_pass",               //
X
xiexionghang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      "quant_conv2d_dequant_fuse_pass",            //
      "delete_quant_dequant_op_pass",              //
      // "fc_fuse_pass",                                 //
      "tensorrt_subgraph_pass",  //
      "conv_bn_fuse_pass",       //
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
      "conv_elementwise_add_fuse_pass",       //
#endif                                        //
      "transpose_flatten_concat_fuse_pass",
});

// The following passes works for Anakin sub-graph engine.
const std::vector<std::string> kAnakinSubgraphPasses({
    "quant_conv2d_dequant_fuse_pass",               //
    "simplify_anakin_priorbox_detection_out_pass",  //
    "fillconstant_elementwisemul_fuse",             //
    "fc_fuse_pass",                                 //
    "conv_elementwise_add_fuse_pass",               //
    "fc_gru_fuse_pass",                             //
    "shuffle_channel_detect_pass",                  //
    "anakin_subgraph_pass",                         //
    "fc_gru_fuse_pass",                             //
});

GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
106 107 108 109 110
    //   "identity_scale_op_clean_pass",             //
    "is_test_pass",                                  //
        "simplify_with_basic_ops_pass",              //
        "fc_fuse_pass",                              //
        "fc_elementwise_layernorm_fuse_pass",        //
X
xiexionghang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        "conv_affine_channel_fuse_pass",             //
        "conv_eltwiseadd_affine_channel_fuse_pass",  //
        "conv_bn_fuse_pass",                         //
        "conv_eltwiseadd_bn_fuse_pass",              //
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
        "conv_elementwise_add_fuse_pass",       //
#endif                                          //
        "transpose_flatten_concat_fuse_pass",
        // following pass should be located in the last, since it will
        // work on all fused ops.
        "runtime_context_cache_pass"
  });

  use_gpu_ = true;
}

130 131 132 133 134 135 136
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

X
xiexionghang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
}

void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
}

void GpuPassStrategy::EnableNgraph() {
  LOG(ERROR) << "GPU not support Ngraph yet";
}

CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
152
  passes_.assign({"simplify_with_basic_ops_pass",   //
X
xiexionghang 已提交
153 154 155
                  "attention_lstm_fuse_pass",       //
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
156
                  "seqpool_cvm_concat_fuse_pass",  //
X
xiexionghang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
                  // "embedding_fc_lstm_fuse_pass", //
                  "fc_lstm_fuse_pass",             //
                  "mul_lstm_fuse_pass",            //
                  "fc_gru_fuse_pass",              //
                  "mul_gru_fuse_pass",             //
                  "seq_concat_fc_fuse_pass",       //
                  "fc_fuse_pass",                  //
                  "repeated_fc_relu_fuse_pass",    //
                  "squared_mat_sub_fuse_pass",     //
                  "conv_bn_fuse_pass",             //
                  "conv_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                  //
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
                  "runtime_context_cache_pass"});

  use_gpu_ = false;
}

176 177
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

X
xiexionghang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

    for (auto &pass : std::vector<std::string>({
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
             "conv_bias_mkldnn_fuse_pass",    //
             "conv_transpose_bias_mkldnn_fuse_pass",
             "conv3d_bias_mkldnn_fuse_pass",  //
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
193 194 195
             "conv_relu_mkldnn_fuse_pass",        //
             "conv_leaky_relu_mkldnn_fuse_pass",  //
             "conv_relu6_mkldnn_fuse_pass",       //
X
xiexionghang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
             // Disabled due to topology-dependent speed-up
             // "fc_mkldnn_pass"
         })) {
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

void CpuPassStrategy::EnableNgraph() {
#ifdef PADDLE_WITH_NGRAPH
  if (!use_ngraph_) {
    passes_.insert(passes_.begin(), "ngraph_subgraph_pass");
  }
  use_ngraph_ = true;
#else
  use_ngraph_ = false;
#endif
}
}  // namespace paddle