api_anakin_engine.cc 17.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <map>
#include <string>
#include <utility>
#include <vector>

#include "paddle/fluid/inference/api/api_anakin_engine.h"
#include "paddle/fluid/inference/api/paddle_api.h"

#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"

namespace paddle {

using paddle::contrib::AnakinConfig;
template <typename T, Precision P, OpRunType R>
extern std::mutex PaddleInferenceAnakinPredictor<T, P, R>::mutex_;
template <typename T, Precision P, OpRunType R>
extern std::once_flag PaddleInferenceAnakinPredictor<T, P, R>::init_anakin_;

template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitEnv() {
  std::call_once(this->init_anakin_, [this]() {
    anakin::Env<T>::env_init(this->config_.max_stream);
  });
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
45
  delete this->executor_p_;
X
xiexionghang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  this->executor_p_ = new anakin::Net<T, P, R>(*this->graph_p_, true);
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitGraph() {
  this->graph_p_ =
      std::make_shared<anakin::graph::Graph<T, anakin::Precision::FP32>>();
  if (!this->config_.model_file.empty()) {
    this->graph_p_->load(this->config_.model_file);
  } else if (this->config_.model_buf_p) {
    this->graph_p_->load(this->config_.model_buf_p,
                         this->config_.model_buf_len);
  } else {
    LOG(FATAL) << "Model load error.";
  }
  this->input_names_ = this->graph_p_->get_ins();
  this->output_names_ = this->graph_p_->get_outs();
  for (auto &input_str : this->input_names_) {
    if (this->config_.init_inputs_shape.find(input_str) ==
        this->config_.init_inputs_shape.end()) {
      LOG(FATAL) << input_str << " should be set in init_inputs_shape.";
    }
    std::vector<int> shape =
        this->config_.init_inputs_shape.find(input_str)->second;
    this->graph_p_->Reshape(input_str, shape);
  }
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::OptimizeGraph() {
  if (!this->graph_p_->Optimize()) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <typename T, Precision P, OpRunType R>
void PaddleInferenceAnakinPredictor<T, P, R>::InitPredictor() {
  this->InitEnv();
  this->SetContext();
  this->InitGraph();
  this->OptimizeGraph();
  this->InitNet();
}
template <typename T, Precision P, OpRunType R>
93
void PaddleInferenceAnakinPredictor<T, P, R>::Predict(int batch_size) {
X
xiexionghang 已提交
94 95 96 97 98 99 100 101 102
  anakin::TargetWrapper<T>::device_sync();
  this->executor_p_->prediction();
  anakin::TargetWrapper<T>::device_sync();
}
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  if (this->config_.re_allocable) {
103
    return this->RunImpl(inputs, output_data, batch_size);
X
xiexionghang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  } else {
    // Run inputs data that exceeds batch size in batches.
    // 1. Reassign the batch size.
    if (batch_size == -1) {
      if (!inputs[0].lod.empty()) {
        batch_size = inputs[0].lod[0].size() - 1;
      } else {
        batch_size = inputs[0].shape[0];
      }
    }
    // 2. If the data don't need to be batched, run it directly.
    if (batch_size <= this->config_.init_batch_size) {
      return this->RunImpl(inputs, output_data);
    }
    // 3. Check the batch size and define temporary variables.
    std::vector<PaddleTensor> cur_inputs;
    std::vector<PaddleTensor> outputs_master;
    std::vector<std::vector<paddle::PaddleTensor>> outputs_vec;
    for (const auto &input : inputs) {
      if (!input.lod.empty()) {
        if (input.lod.size() != 1) {
          return false;
        }
        if (input.lod[0].size() - 1 != batch_size) {
          return false;
        }
      } else {
        LOG(INFO) << "Non-lod mode to be implemented.";
        return false;
      }
      PaddleTensor tensor;
      tensor.name = input.name;
      tensor.dtype = PaddleDType::FLOAT32;
      cur_inputs.push_back(tensor);
    }
    for (auto output : *output_data) {
      PaddleTensor tensor;
      tensor.name = output.name;
      outputs_master.push_back(tensor);
    }
    // 4. Batch execution.
    for (size_t start_batch = 0; start_batch < batch_size;) {
      auto end_batch = start_batch + this->config_.init_batch_size;
      if (end_batch > batch_size) {
        end_batch = batch_size;
      }
      auto cur_outputs = outputs_master;
      for (size_t i = 0; i < inputs.size(); i++) {
        auto start = inputs[i].lod[0][start_batch];
        auto end = inputs[i].lod[0][end_batch];
        std::vector<size_t> offsets;
        for (size_t j = start_batch; j <= end_batch; j++) {
          offsets.push_back(inputs[i].lod[0][j] -
                            inputs[i].lod[0][start_batch]);
        }
        auto mem_start = static_cast<float *>(inputs[i].data.data()) + start;
        cur_inputs[i].data =
            PaddleBuf(mem_start, (end - start) * sizeof(float));
        cur_inputs[i].lod = std::vector<std::vector<size_t>>({offsets});
        cur_inputs[i].shape =
            std::vector<int>({static_cast<int>(end - start), 1, 1, 1});
      }
      if (!this->RunImpl(cur_inputs, &cur_outputs)) {
        return false;
      }
      outputs_vec.push_back(cur_outputs);
      start_batch = end_batch;
    }
    // 5. Copy the results to contiguous memory.
    // Assume that each batch has the same final outputs size.
    auto count = [](const std::vector<int> &v) {
      int cnt = 1;
      for_each(v.begin(), v.end(), [&cnt](int n) { cnt *= n; });
      return cnt;
    };
    for (size_t i = 0; i < output_data->size(); i++) {
      std::vector<int> shape = outputs_vec[i][0].shape;
      shape[0] = batch_size;
      int total_cnt = count(shape);
      (*output_data)[i].shape = shape;
      (*output_data)[i].data.Resize(total_cnt * sizeof(float));
      float *addr = static_cast<float *>((*output_data)[i].data.data());
      for (const auto &single_out : outputs_vec) {
        int cnt = count(single_out[i].shape);
        memcpy(addr, single_out[i].data.data(), cnt * sizeof(float));
        addr += cnt;
      }
    }
  }
  return true;
}
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::RunImpl(
    const std::vector<PaddleTensor> &inputs,
198
    std::vector<PaddleTensor> *output_data, int batch_size) {
X
xiexionghang 已提交
199 200 201 202 203 204 205 206 207 208 209 210
  anakin::TargetWrapper<T>::set_device(this->config_.device_id);
  for (const auto &input : inputs) {
    if (input.dtype != PaddleDType::FLOAT32) {
      LOG(FATAL) << "Only support float type inputs. " << input.name
                 << "'s type is not float";
    }
    auto d_tensor_p = this->executor_p_->get_in(input.name);
    auto net_shape = d_tensor_p->valid_shape();
    if (net_shape.size() != input.shape.size()) {
      LOG(FATAL) << " input  " << input.name
                 << "'s shape size should be equal to that of net";
    }
211
#ifndef ANAKIN_MLU_PLACE
X
xiexionghang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
    int sum = 1;
    for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
    if (sum > net_shape.count()) {
      if (this->config_.re_allocable) {
        this->graph_p_->Reshape(input.name, input.shape);
        this->InitNet();
        d_tensor_p = this->executor_p_->get_in(input.name);
      } else {
        LOG(FATAL)
            << "Run failed because Anakin was expected not to reallocate "
               "memory.";
      }
    }
225
#endif
X
xiexionghang 已提交
226 227 228 229 230 231 232 233
    std::vector<int> tmp_shape;
    for (auto s : input.shape) {
      tmp_shape.push_back(s);
    }
    auto *data = static_cast<float *>(input.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
                 tmp_shape);
234
#ifndef ANAKIN_MLU_PLACE
X
xiexionghang 已提交
235
    d_tensor_p->reshape(tmp_shape);
236
#endif
X
xiexionghang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    if (input.lod.size() > 0) {
      if (input.lod.size() > 1) {
        LOG(FATAL) << " input lod first dim should <=1, but you set "
                   << input.lod.size();
      }
      std::vector<int> lod(input.lod[0].begin(), input.lod[0].end());
      std::vector<std::vector<int>> offset({lod});
      d_tensor_p->set_seq_offset(offset);
      VLOG(3) << "offset.size(): " << offset[0].size();
      for (int i = 0; i < offset[0].size(); i++) {
        VLOG(3) << offset[0][i];
      }
    }
    d_tensor_p->copy_from(h_tensor);
  }
252
  this->Predict(batch_size);
X
xiexionghang 已提交
253
  if (output_data->empty()) {
254
    LOG(FATAL) << "The output param in the Run function is incorrect.";
X
xiexionghang 已提交
255 256 257 258 259 260 261
  }
  for (auto &output : *output_data) {
    if (std::find(this->output_names_.begin(), this->output_names_.end(),
                  output.name) == this->output_names_.end()) {
      LOG(FATAL) << output.name << " is not in the outputs of the graph.";
    }
    auto *d_tensor_p = this->executor_p_->get_out(output.name);
262 263 264 265 266 267 268
    auto tmp_shape = d_tensor_p->valid_shape();
#ifdef ANAKIN_MLU_PLACE
    tmp_shape.set_num(batch_size);
#endif
    output.shape = tmp_shape;
    if (output.data.length() < tmp_shape.count() * sizeof(float)) {
      output.data.Resize(tmp_shape.count() * sizeof(float));
X
xiexionghang 已提交
269 270 271 272
    }
    auto *data = static_cast<float *>(output.data.data());
    anakin::saber::Tensor<typename anakin::DefaultHostType<T>::Host_type>
        h_tensor(data, typename anakin::DefaultHostType<T>::Host_type(), 0,
273
                 tmp_shape);
X
xiexionghang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    h_tensor.copy_from(*d_tensor_p);
  }
  return true;
}
template <typename T, Precision P, OpRunType R>
bool PaddleInferenceAnakinPredictor<T, P, R>::Reset(
    PaddleInferenceAnakinPredictor<T, P, R> *predictor) {
  this->config_ = predictor->GetConfig();
  this->graph_p_ = predictor->GetGraph();
  this->input_names_ = predictor->GetInputNames();
  this->output_names_ = predictor->GetOutputNames();
  this->ctx_p_ = std::make_shared<anakin::Context<T>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->InitNet();
  return true;
}
template <typename T, Precision P, OpRunType R>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<T, P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinPredictor<T, P, R>());
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
template <typename T, Precision P, OpRunType R>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<T, P, R>::Clone() {
  VLOG(3) << "Anakin Predictor::clone";
  std::unique_ptr<PaddlePredictor> cls = std::move(this->New());
  auto anakin_predictor_p =
      dynamic_cast<PaddleInferenceAnakinPredictor<T, P, R> *>(cls.get());
  if (!anakin_predictor_p) {
    LOG(FATAL) << "fail to call Init";
  }
  anakin_predictor_p->Reset(this);
  return cls;
}

#ifdef ANAKIN_MLU_PLACE
template <Precision P, OpRunType R>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinMLUPredictor<P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinMLUPredictor<P, R>());
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::SetContext() {
  this->ctx_p_ = std::make_shared<anakin::Context<anakin::MLU>>(
      this->config_.device_id, this->config_.data_stream_id,
      this->config_.compute_stream_id);
  this->ctx_p_->set_model_parallel(this->config_.model_parallel);
  this->ctx_p_->set_fusion(this->config_.op_fuse);
327 328
  this->ctx_p_->enable_batch_changable();
  this->ctx_p_->enable_channel_duplicate();
X
xiexionghang 已提交
329 330 331 332 333 334 335 336 337 338
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize(this->config_.op_fuse)) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinMLUPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
339
  delete this->executor_p_;
X
xiexionghang 已提交
340 341 342 343
  this->executor_p_ = new anakin::Net<anakin::MLU, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
344 345
void PaddleInferenceAnakinMLUPredictor<P, R>::Predict(int batch_size) {
  this->executor_p_->fusion_prediction(batch_size);
X
xiexionghang 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
}
#endif

#ifdef ANAKIN_BM_PLACE
template <Precision P, OpRunType R>
std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinBMPredictor<P, R>::New() {
  return std::unique_ptr<PaddlePredictor>(
      new PaddleInferenceAnakinBMPredictor<P, R>());
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::OptimizeGraph() {
  if (!this->graph_p_->fusion_optimize()) {
    LOG(FATAL) << "Graph optimization error.";
  }
}
template <Precision P, OpRunType R>
void PaddleInferenceAnakinBMPredictor<P, R>::InitNet() {
  std::unique_lock<std::mutex> lock(this->mutex_);
364
  delete this->executor_p_;
X
xiexionghang 已提交
365 366 367 368
  this->executor_p_ = new anakin::Net<anakin::BM, P, R>();
  this->executor_p_->fusion_init(*this->graph_p_, this->ctx_p_, true);
}
template <Precision P, OpRunType R>
369
void PaddleInferenceAnakinBMPredictor<P, R>::Predict(int batch_size) {
X
xiexionghang 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  this->executor_p_->fusion_prediction();
}
#endif

#ifdef PADDLE_WITH_CUDA
template class PaddleInferenceAnakinPredictor<
    anakin::NV, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_X86_PLACE
template class PaddleInferenceAnakinPredictor<
    anakin::X86, anakin::Precision::FP32, ::anakin::OpRunType::ASYNC>;
#endif
#ifdef ANAKIN_MLU_PLACE
template class PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                                 ::anakin::OpRunType::SYNC>;
#endif
#ifdef ANAKIN_BM_PLACE
template class PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                                ::anakin::OpRunType::ASYNC>;
#endif

// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
    const contrib::AnakinConfig &config) {
#ifdef PADDLE_WITH_CUDA
  if (config.target_type == contrib::AnakinConfig::NVGPU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::NV, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
  }
#endif
#ifdef ANAKIN_X86_PLACE
  if (config.target_type == contrib::AnakinConfig::X86) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinPredictor<anakin::X86, anakin::Precision::FP32,
                                           ::anakin::OpRunType::ASYNC>(config));
  }
#endif
#ifdef ANAKIN_MLU_PLACE
  if (config.target_type == contrib::AnakinConfig::MLU) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinMLUPredictor<anakin::Precision::FP32,
                                              ::anakin::OpRunType::SYNC>(
            config));
  }
#endif
#ifdef ANAKIN_BM_PLACE
  if (config.target_type == contrib::AnakinConfig::BM) {
    return std::unique_ptr<PaddlePredictor>(
        new PaddleInferenceAnakinBMPredictor<anakin::Precision::FP32,
                                             ::anakin::OpRunType::ASYNC>(
            config));
  }
#endif
  LOG(FATAL) << "Anakin Predictor create on unknown platform: "
             << config.target_type;
  return nullptr;
}
template <typename T, Precision P, OpRunType R>
void DisplayOpTimer(anakin::Net<T, P, R> *net_executor, int epoch) {
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
  std::vector<float> op_time = net_executor->get_op_time();
  auto exec_funcs = net_executor->get_exec_funcs();
  auto op_param = net_executor->get_op_param();
  for (int i = 0; i < op_time.size(); i++) {
    LOG(INFO) << "name: " << exec_funcs[i].name
              << " op_type: " << exec_funcs[i].op_name
              << " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
  }
  std::map<std::string, float> op_map;
  for (int i = 0; i < op_time.size(); i++) {
    auto it = op_map.find(op_param[i]);
    if (it != op_map.end())
      op_map[op_param[i]] += op_time[i];
    else
      op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
  }
  for (auto it = op_map.begin(); it != op_map.end(); ++it) {
    LOG(INFO) << it->first << "  " << (it->second) / epoch << " ms";
  }
#endif
}
template <typename T, Precision P, OpRunType R>
PaddleInferenceAnakinPredictor<T, P, R>::~PaddleInferenceAnakinPredictor() {
  DisplayOpTimer<T, P, R>(this->executor_p_, this->config_.init_batch_size);
  delete this->executor_p_;
  this->executor_p_ = nullptr;
}

}  // namespace paddle