analysis_predictor.h 6.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/string/printf.h"
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
namespace paddle {

using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
using framework::NaiveExecutor;

/** \brief This predictor is based on the original native predictor with IR and
 * Analysis support.
 *
 * It will optimize IR and Parameters in the runtime.
 *
 * TODO(Superjomn) Replace the Navive predictor?
 */
class AnalysisPredictor : public PaddlePredictor {
 public:
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
    predictor_id_ = inference::GetUniqueId();
  }
  ~AnalysisPredictor();

  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);

  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

  std::vector<std::string> GetInputNames();
  std::vector<std::string> GetOutputNames();

  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;

68 69
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

X
xiexionghang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  bool ZeroCopyRun() override;

  void CreateFeedFetchVar(framework::Scope *scope);
  void PrepareFeedFetch();

  void PrepareArgument();
  void OptimizeInferenceProgram();

  Argument &analysis_argument() { return argument_; }

  std::unique_ptr<PaddlePredictor> Clone() override;

  framework::Scope *scope() { return scope_.get(); }
  framework::ProgramDesc &program() { return *inference_program_; }

  std::string GetSerializedProgram() const override;

  bool MkldnnQuantize();

  // save program to  model
  // save parameters to params
  void SaveOptimModel(const std::string &dir);

 protected:
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
  bool CreateExecutor();
  bool PrepareExecutor();

  bool LoadProgramDesc();
  bool LoadParameters();

  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
  // PreSet and PostReset for Mkldnn multi-thread and dynamic shape input.
  // Used in AnalysisPredictor::Run(), do not support
  // AnalysisPredictor::ZeroRun() now.
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
  void MkldnnPostReset();

#if PADDLE_WITH_TENSORRT
  // When we use Paddle-TRT INT8 engine, we need to generate calibration table
  // data first,
  // the calibration table contains the range for each op's input and output,
  // this whole process can be divided into several steps:
  //
  // 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  // histogram for each
  // tensor of the distribution of activation values.
  // 2. Builds a calibration table from the histograms.
  //
  // After step 2, we need to store the calibration table on disk
  bool SaveTrtCalibToDisk();
#endif

// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

 private:
  AnalysisConfig config_;
  Argument argument_;
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
  std::vector<framework::OpDesc *> fetches_;
  std::map<size_t, std::string> idx2fetches_;

#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
  // concurrency problems, wrong results and memory leak, so cache them.
  std::vector<framework::LoDTensor> feed_tensors_;
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;

  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
  int predictor_id_;

 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
  bool status_use_gpu_{false};
};

}  // namespace paddle