analysis_config.cc 13.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
extern const std::vector<std::string> kTRTSubgraphPasses;
extern const std::vector<std::string> kAnakinSubgraphPasses;

PassStrategy *AnalysisConfig::pass_builder() const {
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

  return pass_builder_.get();
}

AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
  model_dir_ = model_dir;

  Update();
}
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
  prog_file_ = prog_file;
  params_file_ = params_file;

  Update();
}
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;

  Update();
}
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
#ifdef PADDLE_WITH_CUDA
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
  device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
  use_gpu_ = false;
#endif

  Update();
}
void AnalysisConfig::DisableGpu() {
  use_gpu_ = false;

  Update();
}

AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.

  CP_MEMBER(opt_cache_dir_);
  prog_file_ = std::move(other.prog_file_);
  params_file_ = std::move(other.params_file_);

97
  // GPU related.
X
xiexionghang 已提交
98
  CP_MEMBER(use_gpu_);
99
  CP_MEMBER(use_cudnn_);
X
xiexionghang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  CP_MEMBER(device_id_);
  CP_MEMBER(memory_pool_init_size_mb_);

  CP_MEMBER(enable_memory_optim_);
  // TensorRT related.
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
  CP_MEMBER(tensorrt_precision_mode_);
  CP_MEMBER(trt_use_static_engine_);
  CP_MEMBER(trt_use_calib_mode_);
  // NGRAPH related.
  CP_MEMBER(use_ngraph_);
  // MKLDNN related.
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
  CP_MEMBER(mkldnn_cache_capacity_);
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);

  CP_MEMBER(use_anakin_);
  CP_MEMBER(anakin_max_batchsize_);
  CP_MEMBER(anakin_max_input_shape_);
  CP_MEMBER(anakin_min_subgraph_size_);
  CP_MEMBER(anakin_precision_mode_);
  CP_MEMBER(anakin_auto_config_layout_);
  CP_MEMBER(anakin_passes_filter_);
  CP_MEMBER(anakin_ops_filter_);

131 132 133
  // profile related.
  CP_MEMBER(with_profile_);

X
xiexionghang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

  if (use_gpu_) {
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

#undef CP_MEMBER

  Update();
}

157 158 159 160 161 162 163 164 165 166 167
void AnalysisConfig::EnableCUDNN() {
#ifdef PADDLE_WITH_CUDA
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

X
xiexionghang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
void AnalysisConfig::EnableMKLDNN() {
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif

  Update();
}

void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

void AnalysisConfig::EnableNgraph() {
#ifdef PADDLE_WITH_NGRAPH
  pass_builder()->EnableNgraph();
  use_ngraph_ = true;
#else
  LOG(ERROR) << "Please compile with NGRAPH first to use NGRAPH";
  use_ngraph_ = false;
#endif
}

MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
                          "MkldnnQuantizer was not enabled yet.");
  return mkldnn_quantizer_config_.get();
}

void AnalysisConfig::EnableTensorRtEngine(
    int workspace_size, int max_batch_size, int min_subgraph_size,
    AnalysisConfig::Precision precision_mode, bool use_static,
    bool use_calib_mode) {
#ifdef PADDLE_WITH_CUDA
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
  tensorrt_min_subgraph_size_ = min_subgraph_size;
  tensorrt_precision_mode_ = precision_mode;
  trt_use_static_engine_ = use_static;
  trt_use_calib_mode_ = use_calib_mode;

  Update();
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
}

// TODO(Superjomn) refactor this, buggy.
void AnalysisConfig::Update() {
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }

  } else {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));

    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
  }

  if (use_tensorrt_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }
277 278 279 280 281 282 283 284 285
  if (use_gpu() && use_cudnn_) {
#ifdef PADDLE_WITH_CUDA
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }
X
xiexionghang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

  if (use_ngraph_) {
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableNgraph() only works when IR optimization is enabled.";
    }
#ifdef PADDLE_WITH_NGRAPH
    pass_builder()->EnableNgraph();
    use_ngraph_ = true;
#else
    LOG(ERROR) << "Please compile with NGRAPH first to use NGRAPH";
    use_ngraph_ = false;
#endif
  }

  if (use_mkldnn_) {
#ifdef PADDLE_WITH_MKLDNN
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableMKLDNN();
    }
#endif
  }

  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
    }
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnQuantizer();
#endif
  }

#ifdef PADDLE_WITH_MKLDNN
  // Do not optimize before quantization
  if (enable_memory_optim_ && !use_mkldnn_quantizer_) {
#else
  if (enable_memory_optim_) {
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
  }

  if (use_anakin_) {
    PADDLE_ENFORCE(!use_tensorrt_,
                   "Anakin sub-graph and TensorRT sub-graph are not allowed to "
                   "run at the same time!");
    if (use_gpu_) {
      LOG(INFO) << "Run Anakin GPU mode";
    } else {
      LOG(INFO) << "Run Anakin CPU mode";
    }

    pass_builder()->ClearPasses();
    for (const auto &pass : kAnakinSubgraphPasses) {
      if (std::find(anakin_passes_filter_.begin(), anakin_passes_filter_.end(),
                    pass) == anakin_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

std::string AnalysisConfig::SerializeInfoCache() {
  std::stringstream ss;
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

  ss << use_gpu_;
  ss << device_id_;
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
  ss << tensorrt_min_subgraph_size_;

  ss << enable_memory_optim_;

  ss << use_ngraph_;

  ss << use_mkldnn_;
  ss << mkldnn_cache_capacity_;
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

  ss << use_mkldnn_quantizer_;
  ss << model_from_memory_;

383 384
  ss << with_profile_;

X
xiexionghang 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
  ss << use_anakin_;
  ss << anakin_min_subgraph_size_;
  return ss.str();
}

void AnalysisConfig::SetCpuMathLibraryNumThreads(
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;

  Update();
}

float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#ifdef PADDLE_WITH_CUDA
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
  size_t gpu_used, gpu_available;
  platform::SetDeviceId(device_id_);
  platform::GpuMemoryUsage(&gpu_used, &gpu_available);
  double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
}

419
void AnalysisConfig::EnableMemoryOptim() {
X
xiexionghang 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  enable_memory_optim_ = true;
  Update();
}

bool AnalysisConfig::enable_memory_optim() const {
  return enable_memory_optim_;
}

void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
  model_from_memory_ = true;

  Update();
}

NativeConfig AnalysisConfig::ToNativeConfig() const {
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
  config.device = device_id_;
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
455 456 457 458 459 460

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

X
xiexionghang 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
void AnalysisConfig::EnableAnakinEngine(
    int max_batch_size, std::map<std::string, std::vector<int>> max_input_shape,
    int min_subgraph_size, AnalysisConfig::Precision precision_mode,
    bool auto_config_layout, std::vector<std::string> passes_filter,
    std::vector<std::string> ops_filter) {
  anakin_max_batchsize_ = max_batch_size;
  anakin_max_input_shape_ = max_input_shape;
  anakin_min_subgraph_size_ = min_subgraph_size;
  anakin_passes_filter_ = passes_filter;
  anakin_ops_filter_ = ops_filter;
  use_anakin_ = true;
  anakin_precision_mode_ = precision_mode;
  anakin_auto_config_layout_ = auto_config_layout;
  Update();
}

void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

}  // namespace paddle