subgraph_util.cc 6.8 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file defines the the class to partition a graph.
 */

#include "paddle/fluid/inference/analysis/ir_passes/subgraph_util.h"
#include <algorithm>
#include <string>

namespace paddle {
namespace inference {
namespace analysis {
using framework::ir::Node;

std::vector<std::string> ExtractParameters(
    const std::unordered_set<Node *> &nodes) {
  // We can judge whether a variable is a parameter by
  // its presistable property, but sometimes the presistable
  // of the feed op output is true, so we have to identify it.
  std::vector<std::string> feed_outputs;
  for (const auto &node : nodes) {
    if (!node->IsOp()) continue;
    std::string op_type = node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") {
      std::vector<std::string> output_names = node->Op()->OutputArgumentNames();
      std::copy(output_names.begin(), output_names.end(),
                std::back_inserter(feed_outputs));
    }
  }

  std::vector<std::string> parameters;
  for (const auto &node : nodes) {
    if (!node->IsVar()) continue;
    if (node->Var()->Persistable() &&
        std::find(feed_outputs.begin(), feed_outputs.end(), node->Name()) ==
            feed_outputs.end()) {
      parameters.push_back(node->Name());
    }
  }
  return parameters;
}

void RenameAndGetOutputs(
    const std::vector<framework::ir::Node *> &subgraph_nodes,
    framework::BlockDesc *block_desc,
    const std::set<std::string> &input_names_with_id,
    std::set<std::string> *output_names_with_id,
    std::set<std::string> *output_names,
    std::unordered_map<std::string, std::string> *output_name_map,
    const std::unordered_map<std::string, framework::ir::Node *> &graph_var_map,
    bool trt_and_not_int8) {
  //// In the normal case, the paddle-trt exists bug when runing the googlenet.
  // When there are more than two convolutions of 1 * 1 with the same input, the
  // paddle-tensorrt will do the merging optimization, which fuse those conv
  // into one conv, and then trigger bug. So,  We should use strategy to avoid
  // this optimization for the time being. This bug will be fixed in the future.
  std::unordered_map<std::string /*name*/, int /*ITensor_quote_num*/>
      same_hierarchy_conv2d_num_map;

  auto add_block_var = [&](const std::string &graph_arg,
                           const std::string &block_arg) {
    auto arg_var_node = graph_var_map.find(graph_arg);
    PADDLE_ENFORCE(arg_var_node != graph_var_map.end());
    auto *var_t = block_desc->Var(block_arg);
    var_t->SetShape(arg_var_node->second->Var()->GetShape());
    var_t->SetDataType(arg_var_node->second->Var()->GetDataType());
  };

  for (size_t index = 0; index < block_desc->OpSize(); ++index) {
    framework::proto::OpDesc *op = block_desc->Op(index)->Proto();
    framework::OpDesc op_desc(*op, nullptr);
    auto correspond_node = subgraph_nodes[index];
    PADDLE_ENFORCE_EQ(correspond_node->Name(), op->type());

    std::unordered_map<std::string, size_t> var2id;
    std::unordered_map<std::string, framework::ir::Node *> in_vars;
    for (auto *in_var : correspond_node->inputs) {
      var2id[in_var->Name()] = in_var->id();
      in_vars[in_var->Name()] = in_var;
    }
    // rename for the input variables of op inside subgraph
    for (int i = 0; i < op->inputs_size(); i++) {
      // one input
      auto *in_var = op->mutable_inputs(i);
      std::vector<std::string> replaced_names;
      for (int k = 0; k < in_var->arguments_size(); k++) {  // all the arguments
        const std::string arg_value = in_var->arguments(k);
        const std::string arg_value_with_id =
            arg_value + std::to_string(var2id[arg_value]);
        if (input_names_with_id.count(arg_value_with_id)) {
          replaced_names.push_back(arg_value);
          if (graph_var_map.count(arg_value)) {
            add_block_var(arg_value, arg_value);
          }
        } else {
          replaced_names.push_back(arg_value_with_id);
          if (graph_var_map.count(arg_value)) {
            add_block_var(arg_value, arg_value_with_id);
          }
        }
      }
      in_var->clear_arguments();
      for (size_t k = 0; k < replaced_names.size(); k++) {
        in_var->add_arguments(replaced_names[k]);
      }
    }
    var2id.clear();
    for (auto out_var : correspond_node->outputs) {
      var2id[out_var->Name()] = out_var->id();
    }
    if (op_desc.Type() == "conv2d" && trt_and_not_int8) {
      auto input_var_name = op_desc.Input("Input").front();
      auto filter_var_name = op_desc.Input("Filter").front();
      auto out_var_name = op_desc.Output("Output").front();
      auto filter_shape = in_vars[filter_var_name]->Var()->GetShape();
      const std::vector<int> strides =
          boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
      const std::vector<int> paddings =
          boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
      if (same_hierarchy_conv2d_num_map[input_var_name] > 0) {
        (*output_names_with_id)
            .insert(out_var_name + std::to_string(var2id[out_var_name]));
        (*output_names).insert(out_var_name);
      } else if (filter_shape[2] == 1 && filter_shape[3] == 1 &&
                 strides[0] == 1 && strides[1] == 1 && paddings[0] == 0 &&
                 paddings[1] == 0) {
        same_hierarchy_conv2d_num_map[input_var_name] += 1;
      }
    }
    // rename for the output variables of op inside subgraph
    for (int i = 0; i < op->outputs_size(); i++) {
      framework::proto::OpDesc_Var *out_var = op->mutable_outputs(i);
      std::vector<std::string> replaced_names;
      for (int k = 0; k < out_var->arguments_size(); k++) {
        const std::string arg_value = out_var->arguments(k);
        const std::string arg_value_with_id =
            arg_value + std::to_string(var2id[arg_value]);
        if (graph_var_map.count(arg_value)) {
          add_block_var(arg_value, arg_value_with_id);
        }
        if (output_names_with_id->count(arg_value_with_id)) {
          (*output_name_map)[arg_value] = arg_value_with_id;
        }
        replaced_names.push_back(arg_value_with_id);
      }
      out_var->clear_arguments();
      for (size_t k = 0; k < replaced_names.size(); k++) {
        out_var->add_arguments(replaced_names[k]);
      }
    }
  }
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle