subgraph_detector.cc 16.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"

24 25
DECLARE_bool(use_ngraph);

X
xiexionghang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
namespace paddle {
namespace inference {
namespace analysis {

using framework::ir::Node;

std::pair<std::vector<Node *>, std::vector<Node *>>
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) {  // NOLINT
  std::unordered_set<Node *> nodes(graph.begin(), graph.end());
  std::unordered_set<Node *> inputs;
  std::unordered_set<Node *> outputs;
  // Input a Value, check whether its inlink is in the subgraph.
  auto inlink_in_subgraph = [&](Node *n) {
    for (auto *in : n->inputs) {
      if (nodes.count(in)) return true;
    }
    return false;
  };

  for (auto &node : graph) {
    for (auto *in : node->inputs) {
      // The Value that is written by nodes inside a sub-graph shouldn't be the
      // input of the sub-graph.
      if (!nodes.count(in) && in->IsVar() && !inlink_in_subgraph(in)) {
        inputs.insert(in);
      }
    }
    for (auto *out : node->outputs) {
      if (!nodes.count(out) && out->IsVar()) {
        outputs.insert(out);
      }
    }
  }
  return std::make_pair(std::vector<Node *>(inputs.begin(), inputs.end()),
                        std::vector<Node *>(outputs.begin(), outputs.end()));
}

// Filter the Intermediate results of the subgraph node.
void FilterRedundantOutputOfSubGraph(Graph *graph) {
  std::vector<Node *> op_nodes;
  for (auto &node : TopologicalSort(*graph)) {
    if (node.IsVar() || Agent(&node).deleted()) {
      continue;
    }
    op_nodes.push_back(&node);
  }
  size_t op_num = op_nodes.size();
  for (size_t i = 0; i < op_num; i++) {
    if (op_nodes[i]->IsOp()) continue;
    std::unordered_set<std::string> follow_up_input_names;
    for (size_t j = i + 1; j < op_num; j++) {
      for (auto *in : op_nodes[j]->inputs) {
        follow_up_input_names.insert(in->Name());
      }
    }
    std::vector<Node *> filtered_subgraph_outlinks;
    for (auto *out : op_nodes[i]->outputs) {
      if (follow_up_input_names.count(out->Name())) {
        filtered_subgraph_outlinks.push_back(out);
      } else {
        Agent(out).set_deleted(true);
      }
    }
    // The filtered_subgraph_outlinks may be empty.
    op_nodes[i]->outputs = filtered_subgraph_outlinks;
  }
}

std::vector<std::vector<Node *>> SubgraphDetector::operator()() {
  MarkNodesInsideSubGraph();
  return ExtractSubGraphs();
}

// Mark the output variables inside a subgraph with the func.
inline void MarkOutLinksInSubGraph(const Node *func) {
  for (auto *var : func->outputs) {
    Agent(var).set_marked(true);
  }
}

void SubgraphDetector::MarkNodesInsideSubGraph() {
  for (auto &node : framework::ir::GraphTraits::DFS(*graph_)) {
    if (node_inside_subgraph_teller_(&node)) {
      Agent(&node).set_marked(true);
      if (node.IsOp()) {
        // If a function is inside the sub-graph, mark all the output variables
        // to be inside too, so that two marked functions will be inside a same
        // sub-graph, lets take a example:  A_function->var->B_function, if
        // A_function is marked, var should also be marked, so that B_function
        // will be in the same sub-graph with A_function if B_function is
        // marked.
        MarkOutLinksInSubGraph(&node);
      }
    }
  }
}

// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using node_map_t = std::unordered_map<int, Node *>;
// Find the ancestor id of a node.
int UnionFindGetAncestor(const node_map_t &node_map, size_t id) {
  int tmp = id;
  do {
    tmp = Agent(node_map.at(tmp)).union_find_parent();
  } while (Agent(node_map.at(tmp)).union_find_parent() != tmp);
  return tmp;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
  int a_ancestor = UnionFindGetAncestor(node_map, a);
  int b_ancestor = UnionFindGetAncestor(node_map, b);
  Agent(node_map.at(b_ancestor)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(a)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(b)).set_union_find_parent(a_ancestor);
}

// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct BriefNode {
  explicit BriefNode(Node *n) { node = n; }
  Node *node;
  std::vector<BriefNode *> inlinks;
  std::vector<BriefNode *> outlinks;
};

// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
                          int src_id, int dst_id) {
  // merge the two adjacent nodes into one node.
  BriefNode *src_node = node_map.at(src_id);
  BriefNode *dst_node = node_map.at(dst_id);

  std::unordered_set<BriefNode *> inputs(src_node->inlinks.begin(),
                                         src_node->inlinks.end());
  std::unordered_set<BriefNode *> outputs;

  for (auto *n : src_node->outlinks) {
    if (n != dst_node) outputs.insert(n);
  }

  // Add the inlinks and outlinks of dst node to src node.
  std::vector<BriefNode *> dst_in_nodes = dst_node->inlinks;
  for (BriefNode *node : dst_in_nodes) {
    if (node != src_node) {
      inputs.insert(node);
    }
  }

  std::vector<BriefNode *> dst_out_nodes = dst_node->outlinks;
  for (BriefNode *node : dst_out_nodes) {
    outputs.insert(node);
  }

// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
  src_node->inlinks = std::vector<BriefNode *>(inputs.begin(), inputs.end());
  src_node->outlinks = std::vector<BriefNode *>(outputs.begin(), outputs.end());
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
#else
  src_node->inlinks =
      std::move(std::vector<BriefNode *>(inputs.begin(), inputs.end()));
  src_node->outlinks =
      std::move(std::vector<BriefNode *>(outputs.begin(), outputs.end()));
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
#endif

  auto inlink_or_outlink_cleaner = [&](std::vector<BriefNode *> &nodes) {
    for (auto *&n : nodes) {
      if (n == src_node || n == dst_node) {
        n = src_node;
      }
    }
  };
  // Change all the dst inputs and outputs corresponding inlink and
  // outlink to the src node.
  for (auto *node : src_node->inlinks) {
    inlink_or_outlink_cleaner(node->outlinks);
  }

  for (auto *node : src_node->outlinks) {
    inlink_or_outlink_cleaner(node->inlinks);
  }
}

// FlexibleDFS
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void FlexibleDFS(const std::vector<BriefNode *> &source, bool reverse,
                 const std::function<bool(const BriefNode *)> &enter,
                 const std::function<bool(const BriefNode *)> &leave) {
  typedef struct {
    const BriefNode *node;
    bool leave;
  } FNode;

  std::vector<FNode> stack;
  for (auto &node : source) {
    stack.push_back(FNode{node, false});
  }
  std::unordered_set<const BriefNode *> visited;
  while (!stack.empty()) {
    auto fnode = stack.back();
    stack.pop_back();

    if (fnode.leave) {
      if (leave && !leave(fnode.node)) return;
    }
    if (visited.count(fnode.node)) continue;
    visited.insert(fnode.node);

    if (enter && !enter(fnode.node)) return;

    if (leave) stack.push_back(FNode{fnode.node, true});
    const std::vector<BriefNode *> iter_nodes =
        reverse == true ? fnode.node->inlinks : fnode.node->outlinks;
    for (const BriefNode *node : iter_nodes) {
      if (!visited.count(node)) {
        stack.push_back(FNode{node, false});
      }
    }
  }
}

std::vector<std::vector<Node *>> SubgraphDetector::ExtractSubGraphs() {
  // Run the Extract algorithm to find all subgraphs.
  std::vector<Node *> marked_nodes;
  //  We use brief_node_map to represent the original graph in order to avoid
  //  changing the original graph.
  std::unordered_map<int, BriefNode *> brief_node_map;

  std::unordered_set<int32_t> valid_node_ids;
  for (auto *node : graph_->Nodes()) {
    valid_node_ids.insert(node->id());
  }

  for (auto &node : framework::ir::GraphTraits::TS(*graph_)) {
    brief_node_map[node.id()] = new BriefNode(&node);
    if (Agent(&node).marked()) {
      marked_nodes.push_back(&node);
    }
  }

  // extract sub-graphs in the marked node set, use Union Find algorithm.
  node_map_t node_map;  // id to ptr
  for (auto *n : marked_nodes) {
    // n's parent == n.id means it is the ancestor
    Agent(n).set_union_find_parent(n->id());
    node_map[n->id()] = n;
  }

  // create breif node map
  for (auto &itr : brief_node_map) {
    for (Node *node : itr.second->node->inputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->inlinks.push_back(brief_node_map.at(node->id()));
    }

    for (Node *node : itr.second->node->outputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->outlinks.push_back(brief_node_map.at(node->id()));
    }
  }

  for (auto &itr : brief_node_map) {
    BriefNode *brief_node = itr.second;

    if (!Agent(brief_node->node).marked()) {
      VLOG(4) << brief_node->node->id() << " node not a trt candidate.";
      continue;
    }

    //  Our algorithm must guarantee that:
    //  1. The graph is always directed acyclic graph(DAG).
    //  2. If there is a path in the subgraph from X to Y (X and Y are both
    //  nodes in the subgraph), then all paths from X to Y are in the
    //  subgraph.
    //
    //  In order to achieve the above guarantee.
    //  For adjacent nodes src -> dst.
    //  1. Get all dst input nodes except src.
    //  2. Reverse DFS from those input nodes
    //  3. If there is a path from input nodes to src,
    //  then the src and dst nodes can not be fused into one node,
    //  otherwise it can be done.

    while (true) {
      std::unordered_set<BriefNode *> contract_nodes;
      for (auto *out : brief_node->outlinks) {
        // must be an trt candidate
        if (!Agent(out->node).marked()) continue;
        // get all dst input nodes except src.
        std::vector<BriefNode *> source_nodes;
        for (auto *n : out->inlinks) {
          if (n != brief_node) {
            source_nodes.push_back(n);
          }
        }

        // Reverse DFS from the source_nodes.
        bool have_excess_path = false;
        FlexibleDFS(source_nodes, true, nullptr,
                    [&have_excess_path, brief_node](const BriefNode *n) {
                      if (n == brief_node) {
                        have_excess_path = true;
                        return false;
                      }
                      return true;
                    });
        if (have_excess_path) continue;
        contract_nodes.insert(out);
      }
      if (contract_nodes.empty()) break;

      for (auto dst_node : contract_nodes) {
        UnionFindCombine(node_map, brief_node->node->id(),
                         dst_node->node->id());
        UnionContractedNodes(brief_node_map, brief_node->node->id(),
                             dst_node->node->id());
      }
    }
  }

  std::unordered_map<int /*ancestor*/, std::vector<Node *>> clusters;
  for (auto *n : marked_nodes) {
    if (n->IsOp()) {
      clusters[UnionFindGetAncestor(node_map, Agent(n).union_find_parent())]
          .push_back(n);
    }
  }
  std::vector<std::vector<Node *>> result;
  std::for_each(clusters.begin(), clusters.end(),
                [&](const decltype(clusters)::value_type &it) {
                  result.push_back(it.second);
                });

  return result;
}

void SubGraphFuser::operator()() { ReplaceNodesWithSubGraphs(); }

void RemoveIntermediateOutputInSubgraph(const std::vector<Node *> &subgraph,
                                        Graph *graph,
                                        std::vector<Node *> *outputs) {
  std::unordered_set<Node *> subgraph_set(subgraph.begin(), subgraph.end());
  std::unordered_set<Node *> valid_output;

  for (auto *output : *outputs) {
    int num_used = 0;
    for (auto *node : output->outputs) {
      if (!subgraph_set.count(node)) ++num_used;
      if (num_used > 0) valid_output.insert(output);
    }
  }

403 404 405 406 407
  // In use for ngraph subgraph pass for parallel executor,
  // this will remove all nodes, bypass this and let ngraph
  // subgraph pass to process outputs
  if (FLAGS_use_ngraph && valid_output.size() == 0) return;

X
xiexionghang 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  outputs->assign(valid_output.begin(), valid_output.end());
}

void DetachDeletedNodes(framework::ir::Graph *graph) {
  std::unordered_set<const Node *> nodes;
  for (auto *node : graph->Nodes()) {
    if (Agent(node).deleted()) {
      node->inputs.clear();
      node->outputs.clear();
    }
  }
}

void SubGraphFuser::ReplaceNodesWithSubGraphs() {
  auto subgraphs = SubgraphDetector(graph_, node_inside_subgraph_teller_)();
  for (auto &subgraph : subgraphs) {
    if (subgraph.size() <= (size_t)min_subgraph_size_) continue;
    std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end());
    // replace this sub-graph with the first node. Two steps: 1. Create a Block
    // Node that contains this subgraph 2. Mark the nodes inside the sub-graph
    // as deleted. 3. Replace the deleted node with the new Block Node.
    framework::OpDesc empty_desc;
    empty_desc.SetType(name_);
    auto *block_node = graph_->CreateOpNode(&empty_desc);
    Agent(block_node).set_subgraph({});
    auto io = ExtractInputAndOutputOfSubGraph(subgraph);
    block_node->inputs = std::move(io.first);
    block_node->outputs = std::move(io.second);

    RemoveIntermediateOutputInSubgraph(subgraph, graph_, &block_node->outputs);

    for (auto *node : subgraph) {
      // TODO(Superjomn) need a unified mechanism to treat deleted node in each
      // pass.
      Agent(node).set_deleted(true);
      Agent(block_node).subgraph()->push_back(node);
    }

    // Change all the sub-graph's inputs and outputs corresponding inlink and
    // outlink to this sub-graph node.
    auto inlink_or_outlink_cleaner = [&](std::vector<Node *> &nodes) {
      for (auto *&n : nodes) {
        if (subgraph_uniq.count(n)) {
          n = block_node;
        }
      }
      std::unordered_set<Node *> uniq(nodes.begin(), nodes.end());
      nodes.assign(uniq.begin(), uniq.end());
    };
    for (auto *i : block_node->inputs) {
      inlink_or_outlink_cleaner(i->outputs);
    }
    for (auto *&o : block_node->outputs) {
      inlink_or_outlink_cleaner(o->inputs);
    }
  }
  // DetachDeletedNodes(graph_);
  FilterRedundantOutputOfSubGraph(graph_);
}

inline bool CheckNodeIndegreeEquals(const Node &node, size_t n) {
  return node.inputs.size() == n;
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle