engine.h 5.6 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#ifdef EXIT  // NOLINT
#undef EXIT  // NOLINT
#endif       // NOLINT
#include "framework/core/net/net.h"
#include "framework/core/types.h"
#include "framework/graph/graph.h"
#include "framework/graph/graph_global_mem.h"
#include "saber/saber_types.h"

using anakin::Precision;

namespace anakin {

template <typename, Precision, OpRunType>
class Net;

namespace graph {
template <typename, Precision>
class Graph;
}  // namespace graph
}  // namespace anakin

namespace paddle {
namespace inference {
namespace anakin {

template <typename TargetT, ::anakin::Precision PrecisionType,
          ::anakin::OpRunType RunType = ::anakin::OpRunType::ASYNC>
class AnakinEngine {
  using NetT = ::anakin::Net<TargetT, PrecisionType, RunType>;
  using GraphT = ::anakin::graph::Graph<TargetT, PrecisionType>;

 public:
  explicit AnakinEngine(
      bool need_summary = false, int device = 0, int max_batch_size = 1,
      std::map<std::string, std::vector<int>> max_input_shape = {},
      std::vector<std::string> program_inputs = {},
      bool auto_config_layout = false);
  ~AnakinEngine();
  void InitNet();
  void SetInputShape(const std::string &name, std::vector<int> shape);
  void AddOp(const std::string &name, const std::string &type,
             const std::vector<std::string> &inputs,
             const std::vector<std::string> &outputs);

  template <typename T>
  void AddOpAttr(const std::string &op_name, const std::string &attr_name,
                 const T &attr_value) {
    PADDLE_ENFORCE(graph_->AddOpAttr(op_name, attr_name, attr_value),
                   "Add operation's attribution.");
  }
  NetT *Net() { return net_.get(); }
  GraphT *Graph() { return graph_.get(); }
  std::unique_ptr<AnakinEngine> Clone();
  const std::map<std::string, std::vector<int>> &GetMaxInputShape() {
    return max_input_shape_;
  }
  void SetMaxInputShape(std::map<std::string, std::vector<int>> shape) {
    max_input_shape_ = shape;
  }
  const std::vector<std::string> &GetScalableInputs() {
    return program_inputs_;
  }
  void SetScalableInputs(std::vector<std::string> program_inputs) {
    program_inputs_ = program_inputs;
  }
  int GetMaxBatchSize() { return max_batch_size_; }
  void Freeze();
  void Optimize();
  void RegistBlock(::anakin::PBlock<TargetT> *block_p);
  void Save(std::string path) { graph_->save(path); }
  bool IsInit() { return initialized_; }
  int GetDevice() { return device_; }
  void AddTensorScale(const std::string &tensor_name, float scale) {
    tensor_scales_[tensor_name] = scale;
  }
  std::unordered_map<std::string, float> GetTensorScales() {
    return tensor_scales_;
  }
  void Execute(const std::map<std::string, framework::LoDTensor *> &inputs,
               const std::map<std::string, framework::LoDTensor *> &outputs);
#ifdef PADDLE_WITH_CUDA
  void Execute(const std::map<std::string, framework::LoDTensor *> &inputs,
               const std::map<std::string, framework::LoDTensor *> &outputs,
               cudaStream_t stream);
#endif

 private:
  void BindInput(const std::map<std::string, framework::LoDTensor *> &inputs);

 private:
  bool initialized_{false};
  int device_;
  int max_batch_size_;
  std::map<std::string, std::vector<int>> max_input_shape_;
  std::vector<std::string> program_inputs_;
  std::unique_ptr<GraphT> graph_;
  std::unique_ptr<NetT> net_;
  static std::once_flag init_anakin_;
  std::unordered_map<std::string, float> tensor_scales_;
  // Always be false in gpu mode but true in most cpu cases.
  bool auto_config_layout_;
};

template <typename TargetT, ::anakin::Precision PrecisionType>
class AnakinEngineManager {
  using AnakinEngineT = AnakinEngine<TargetT, PrecisionType>;

 public:
  bool HasEngine(const std::string &name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }
  AnakinEngineT *Get(const std::string &name) const {
    return engines_.at(name).get();
  }

  AnakinEngineT *Create(bool need_summary, int device, int max_batch_size,
                        std::map<std::string, std::vector<int>> max_input_shape,
                        std::vector<std::string> program_inputs,
                        bool auto_config_layout, std::string engine_name) {
    std::unique_lock<std::mutex> lk(mut_);
    auto *p = new AnakinEngine<TargetT, PrecisionType>(
        need_summary, device, max_batch_size, max_input_shape, program_inputs,
        auto_config_layout);
    engines_[engine_name].reset(p);
    return p;
  }

  void DeleteALL() {
    for (auto &item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<AnakinEngineT>> engines_;
  std::mutex mut_;
};
}  // namespace anakin
}  // namespace inference
}  // namespace paddle