engine.cc 8.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/anakin/engine.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <utility>
#include "paddle/fluid/framework/ddim.h"

using anakin::Precision;
using anakin::OpRunType;
using paddle::framework::LoDTensor;
template <typename T, Precision P, OpRunType O>
using AnakinNetT = anakin::Net<T, P, O>;

template <typename T, Precision P>
using AnakinGraphT = anakin::graph::Graph<T, P>;

namespace paddle {
namespace inference {
namespace anakin {

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
extern std::once_flag
    AnakinEngine<TargetT, PrecisionType, RunType>::init_anakin_;

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
AnakinEngine<TargetT, PrecisionType, RunType>::AnakinEngine(
    bool need_summary, int device, int max_batch_size,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::vector<std::string> program_inputs, bool auto_config_layout)
    : device_(device),
      max_batch_size_(max_batch_size),
      max_input_shape_(max_input_shape),
      program_inputs_(program_inputs),
      auto_config_layout_(auto_config_layout) {
  ::anakin::TargetWrapper<TargetT>::set_device(device_);
  std::call_once(init_anakin_,
                 [this]() { ::anakin::Env<TargetT>::env_init(); });
  graph_.reset(new AnakinGraphT<TargetT, PrecisionType>());
  net_.reset(new AnakinNetT<TargetT, PrecisionType, RunType>(need_summary));
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
AnakinEngine<TargetT, PrecisionType, RunType>::~AnakinEngine() {}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::SetInputShape(
    const std::string &name, std::vector<int> shape) {
  graph_->AddOpAttr<::anakin::PTuple<int>>(name, "input_shape",
                                           std::move(shape));
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::InitNet() {
  net_->init(*graph_, auto_config_layout_);
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::AddOp(
    const std::string &name, const std::string &type,
    const std::vector<std::string> &inputs,
    const std::vector<std::string> &outputs) {
  PADDLE_ENFORCE(graph_->AddOp(name, type, inputs, outputs), "Add operation.");
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::BindInput(
    const std::map<std::string, framework::LoDTensor *> &inputs) {
#ifdef PADDLE_WITH_CUDA
  cudaDeviceSynchronize();
#endif
  for (const auto &input : inputs) {
    auto *tensor = input.second;
    auto *data = tensor->data<float>();

89
    auto fluid_input_shape = framework::vectorize<int>(tensor->dims());
X
xiexionghang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    while (fluid_input_shape.size() < 4) {
      fluid_input_shape.push_back(1);
    }
    auto *anakin_input = net_->get_in(input.first);
    std::vector<int> max_input_shape = max_input_shape_[input.first];
    int max_shape_sum =
        std::accumulate(max_input_shape.begin(), max_input_shape.end(), 1,
                        std::multiplies<int>());
    if (tensor->numel() > max_shape_sum) {
      PADDLE_ENFORCE(std::find(program_inputs_.begin(), program_inputs_.end(),
                               input.first) == program_inputs_.end(),
                     "The anakin input max shape should be greater than"
                     " or equal to the real input shape, Please set the max "
                     "input shape using EnableAnakinEngine");
      VLOG(3) << "Anakin Net will be reset because of the inputs out of range: "
              << input.first;
      graph_->Reshape(input.first, fluid_input_shape);
      net_.reset(new AnakinNetT<TargetT, PrecisionType, RunType>(true));
      net_->init(*graph_);
      anakin_input = net_->get_in(input.first);
    }
    anakin_input->reshape(fluid_input_shape);
    ::anakin::saber::Tensor<TargetT> tmp_anakin_tensor(data, TargetT(), device_,
                                                       fluid_input_shape);
    anakin_input->copy_from(tmp_anakin_tensor);
  }
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::Execute(
    const std::map<std::string, framework::LoDTensor *> &inputs,
    const std::map<std::string, framework::LoDTensor *> &outputs) {
  BindInput(inputs);
  net_->prediction();
  for (const auto &output : outputs) {
    platform::CPUPlace cpu_place;
    auto *tensor = output.second;
    auto *anakin_output = net_->get_out(output.first);
    auto *anakin_data = anakin_output->data();
    auto anakin_output_shape = anakin_output->valid_shape();
    tensor->Resize(framework::make_ddim(anakin_output_shape));
    auto *fluid_data = tensor->mutable_data<float>(cpu_place);
    memory::Copy(cpu_place, static_cast<void *>(fluid_data), cpu_place,
                 static_cast<void *>(anakin_data),
                 tensor->numel() * sizeof(float));
  }
}

#ifdef PADDLE_WITH_CUDA
template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::Execute(
    const std::map<std::string, framework::LoDTensor *> &inputs,
    const std::map<std::string, framework::LoDTensor *> &outputs,
    cudaStream_t stream) {
  BindInput(inputs);
  net_->prediction();
  cudaDeviceSynchronize();
  for (const auto &output : outputs) {
    platform::CUDAPlace gpu_place(device_);
    auto *tensor = output.second;
    auto *anakin_output = net_->get_out(output.first);
    auto *anakin_data = anakin_output->data();
    auto anakin_output_shape = anakin_output->valid_shape();
    tensor->Resize(framework::make_ddim(anakin_output_shape));
    auto *fluid_data = tensor->mutable_data<float>(gpu_place);
    memory::Copy(gpu_place, static_cast<void *>(fluid_data), gpu_place,
                 static_cast<void *>(anakin_data),
                 tensor->numel() * sizeof(float), stream);
  }
  cudaDeviceSynchronize();
}
#endif

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::Freeze() {
  PADDLE_ENFORCE(graph_->Freeze(), "Freeze anakin subgraph.");
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::Optimize() {
  PADDLE_ENFORCE(graph_->Optimize(), "Graph optimization.");
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
void AnakinEngine<TargetT, PrecisionType, RunType>::RegistBlock(
    ::anakin::PBlock<TargetT> *block_p) {
  PADDLE_ENFORCE(graph_->RegistBlock(block_p), "Block register.");
}

template <typename TargetT, Precision PrecisionType, OpRunType RunType>
std::unique_ptr<AnakinEngine<TargetT, PrecisionType, RunType>>
AnakinEngine<TargetT, PrecisionType, RunType>::Clone() {
  auto *engine = new AnakinEngine();
  engine->net_ = std::move(net_->Clone());
  return std::unique_ptr<AnakinEngine>(engine);
}

#ifdef PADDLE_WITH_CUDA
template class AnakinEngine<::anakin::saber::NV, ::anakin::Precision::FP32>;
template class AnakinEngineManager<::anakin::saber::NV,
                                   ::anakin::Precision::FP32>;

template class AnakinEngine<::anakin::saber::NV, ::anakin::Precision::INT8>;
template class AnakinEngineManager<::anakin::saber::NV,
                                   ::anakin::Precision::INT8>;
#endif
#ifdef ANAKIN_X86_PLACE
template class AnakinEngine<::anakin::saber::X86, ::anakin::Precision::FP32>;
template class AnakinEngineManager<::anakin::saber::X86,
                                   ::anakin::Precision::FP32>;
template class AnakinEngine<::anakin::saber::X86, ::anakin::Precision::INT8>;
template class AnakinEngineManager<::anakin::saber::X86,
                                   ::anakin::Precision::INT8>;
#endif
// template class AnakinEngine<::anakin::saber::X86, ::anakin::Precision::FP32>;
}  // namespace anakin
}  // namespace inference
}  // namespace paddle