op_converter.h 10.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "framework/core/types.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "saber/saber_types.h"

namespace paddle {
namespace inference {
namespace anakin {

template <typename TargetT, ::anakin::Precision PrecisionT>
class AnakinOpConverter {
  using AnakinEngineT = AnakinEngine<TargetT, PrecisionT>;

 public:
  AnakinOpConverter() = default;

  virtual void operator()(const framework::proto::OpDesc &op,
                          const framework::BlockDesc &block_desc,
                          const framework::Scope &scope, bool test_mode) {}
  void ConvertOp(const framework::proto::OpDesc &op,
                 const framework::BlockDesc &block_desc,
                 const std::unordered_set<std::string> &parameters,
                 const framework::Scope &scope, AnakinEngineT *engine,
                 bool test_mode = false) {
    framework::OpDesc op_desc(op, nullptr);
    std::string op_type = op_desc.Type();
    AnakinOpConverter *it = nullptr;
    if (op_type == "depthwise_conv2d") op_type = "conv2d";
    if (op_type == "reshape2") op_type = "reshape";
    if (op_type == "transpose2") op_type = "transpose";
    if (op_type == "flatten2") op_type = "flatten";

    if (!it) {
      it = Registry<AnakinOpConverter>::Global().Lookup(op_type);
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", op_type);
    it->SetEngine(engine);
    (*it)(op, block_desc, scope, test_mode);
  }

  void ConvertBlock(framework::BlockDesc *block_desc,
                    const std::unordered_set<std::string> &parameters,
                    const framework::Scope &scope, AnakinEngineT *engine) {
    std::unique_lock<std::mutex> lock(mutex_);
    framework::proto::BlockDesc *block = block_desc->Proto();
    for (auto i = 0; i < block->ops_size(); i++) {
      auto &op = block->ops(i);
      ConvertOp(op, *block_desc, parameters, scope, engine);
    }
  }

  // The scope  here should be inited with the parameter vars.
  void ConvertBlockToAnakinEngine(
      framework::BlockDesc *block_desc, framework::Scope *scope,
      const std::vector<std::string> &inputs,
      const std::unordered_set<std::string> &parameters,
      const std::vector<std::string> &outputs, AnakinEngineT *engine) {
    ConvertBlock(block_desc, parameters, *scope, engine);
    // if the max_batch size
    int max_batch_size = engine->GetMaxBatchSize();
    PADDLE_ENFORCE(max_batch_size > 0,
                   "the max_batch_size setted from config->EnableAnakinEngine "
                   "must largger than 0");
    // If the user does not specify this variable, we use the input shape from
    // the block_desc.
    auto max_input_shape = engine->GetMaxInputShape();
    std::map<std::string, std::vector<int>> temp_max_input_shape;
    // Register outputs with anakin using the RegistVar interface before Freeze.
    // Note that RegistVar's parameters can only be outputs, not inputs.
    for (auto &output : outputs) {
      engine->Graph()->RegistVar(output);
    }
    engine->Freeze();
    // Add scale for tensor in int8 mode.
    auto tensor_scales = engine->GetTensorScales();

    for (auto &item : tensor_scales) {
      engine->Graph()->SetVarScale(item.first, item.second);
    }

    for (auto &input : inputs) {
      if (parameters.count(input)) continue;
      std::vector<int> input_shape;
      input_shape.resize(4);
      input_shape[0] = max_batch_size;
      if (max_input_shape.count(input)) {
        PADDLE_ENFORCE(max_input_shape[input].size() == 4,
                       "the dimensions of max_input_shape setted from "
                       "config->EnableAnakinEngine must be 4");
        for (int i = 1; i < 4; i++) {
          input_shape[i] = max_input_shape[input][i];
        }
      } else {
        auto *var = block_desc->FindVar(input);
        PADDLE_ENFORCE(var, "no variable called %s", input);

        auto var_shape = var->GetShape();
        std::cout << "input :" << input << std::endl;
        PADDLE_ENFORCE(var_shape.size() == 4);

        for (size_t i = 1; i < var_shape.size(); i++) {
          input_shape[i] = var_shape[i];
        }
      }
      temp_max_input_shape[input] = input_shape;
      engine->SetInputShape(input, input_shape);
    }
    engine->SetMaxInputShape(temp_max_input_shape);
    engine->Optimize();
    engine->InitNet();
  }

  void SetEngine(AnakinEngineT *engine) { engine_ = engine; }
  virtual ~AnakinOpConverter() {}

 protected:
  bool test_mode_;
  AnakinEngineT *engine_{nullptr};

 private:
  std::unordered_map<std::string, AnakinOpConverter<TargetT, PrecisionT> *>
      converters_;
  framework::Scope *scope_{nullptr};
  std::mutex mutex_;
};

template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::NV,
                                 ::anakin::Precision::INT8>;
#ifdef ANAKIN_X86_PLACE
template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::FP32>;
template class AnakinOpConverter<::anakin::saber::X86,
                                 ::anakin::Precision::INT8>;
#endif
}  // namespace anakin
}  // namespace inference
}  // namespace paddle

#define REGISTER_ANAKIN_OP_CONVERTER_BASE(op_type__, Converter__,              \
                                          place_type__, place_class__,         \
                                          precision_type__, precision_class__) \
  struct anakin_##op_type__##_##place_type__##_##precision_type__##_converter  \
      : public ::paddle::framework::Registrar {                                \
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter() {   \
      LOG(INFO) << "register convert " << #op_type__ << " ";                   \
      ::paddle::inference::Registry<                                           \
          ::paddle::inference::anakin::AnakinOpConverter<                      \
              place_class__, precision_class__>>::Global()                     \
          .Register<Converter__>(#op_type__);                                  \
    }                                                                          \
  };                                                                           \
  anakin_##op_type__##_##place_type__##_##precision_type__##_converter         \
      anakin_##op_type__##_##place_type__##_##precision_type__##_converter__;  \
  int Touch_anakin_##op_type__##_##place_type__##_##precision_type__() {       \
    anakin_##op_type__##_##place_type__##_##precision_type__##_converter__     \
        .Touch();                                                              \
    return 0;                                                                  \
  }

#define WRAP(...) __VA_ARGS__

#define REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__,       \
                                          precision_type__)             \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                    \
      op_type__,                                                        \
      ::paddle::inference::anakin::Converter__<WRAP(                    \
          ::anakin::saber::NV, ::anakin::Precision::precision_type__)>, \
      CUDA, ::anakin::saber::NV, precision_type__,                      \
      ::anakin::Precision::precision_type__)

#define REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__,         \
                                         precision_type__)               \
  REGISTER_ANAKIN_OP_CONVERTER_BASE(                                     \
      op_type__,                                                         \
      ::paddle::inference::anakin::Converter__<WRAP(                     \
          ::anakin::saber::X86, ::anakin::Precision::precision_type__)>, \
      CPU, ::anakin::saber::X86, precision_type__,                       \
      ::anakin::Precision::precision_type__)

#if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE)
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)       \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8); \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32);  \
  REGISTER_CPU_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
#elif defined(PADDLE_WITH_CUDA)
#define REGISTER_ANAKIN_OP_CONVERTER(op_type__, Converter__)       \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, FP32); \
  REGISTER_CUDA_ANAKIN_OP_CONVERTER(op_type__, Converter__, INT8)
#endif

#define USE_ANAKIN_CONVERTER_BASE(op_type__, place_type__, precision_type__)   \
  extern int Touch_anakin_##op_type__##_##place_type__##_##precision_type__(); \
  int use_converter_anakin_##op_type__##_##place_type__##_##precision_type__   \
222
      UNUSED =                                                                 \
X
xiexionghang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
          Touch_anakin_##op_type__##_##place_type__##_##precision_type__();

#if defined(PADDLE_WITH_CUDA) && defined(ANAKIN_X86_PLACE)
#define USE_ANAKIN_CONVERTER(op_type__)            \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, FP32)
#define USE_INT8_ANAKIN_CONVERTER(op_type__)       \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CPU, INT8)
#elif defined(PADDLE_WITH_CUDA)
#define USE_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, FP32)
#define USE_INT8_ANAKIN_CONVERTER(op_type__) \
  USE_ANAKIN_CONVERTER_BASE(op_type__, CUDA, INT8)
#endif