engine.cc 8.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/engine.h"

17 18 19 20 21 22
#include <algorithm>
#include <memory>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <utility>
X
xiexionghang 已提交
23
#include <vector>
24 25 26 27 28
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"
X
xiexionghang 已提交
29 30 31 32

namespace paddle {
namespace imperative {

33 34 35 36 37 38 39 40 41 42 43 44 45
void Engine::RunOp(paddle::imperative::OpBase* op,
                   const paddle::imperative::NameVarBaseMap& ins,
                   const paddle::imperative::NameVarBaseMap& outs,
                   const paddle::platform::Place& place) {
  platform::RecordEvent event(op->Type());

  op->Run(ins, outs);
}

void BasicEngine::Init(VarBase* var, const detail::BackwardStrategy& strategy) {
  backward_strategy_ = strategy;
  const std::vector<OpBase*> ops = var->GradVarBase()->GradOps();
  var->ClearGradOps();
X
xiexionghang 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  if (ops.empty()) {
    VLOG(3) << "Skip auto grad since there is no grad op for var: "
            << var->Name();
    return;
  } else {
    bool valid = false;
    for (const auto& op : ops) {
      if (op) {
        valid = true;
      }
    }
    if (!valid) {
      VLOG(3) << "Skip auto grad since all grad op of start VarBase is nullptr";
      return;
    }
X
xiexionghang 已提交
62
  }
63 64 65
  init_ops_ = ops;
  platform::RecordEvent record_event("Imperative Backward");
  VLOG(3) << "start backward";
X
xiexionghang 已提交
66

67 68
  PADDLE_ENFORCE_EQ(var->HasGradVar(), true,
                    "Grad variable not exist for variable %s", var->Name());
X
xiexionghang 已提交
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  auto& fwd_var = var->Var().Get<framework::LoDTensor>();
  auto* grad_var =
      var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
  VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
          << " as stop_gradient false";
  var->GradVarBase()->InnerSetOverridedStopGradient(false);
  var->GradVarBase()->SetGradGenerated(true);
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(fwd_var.place());
  grad_var->Resize(fwd_var.dims());
  grad_var->mutable_data(fwd_var.place(), fwd_var.type());
  operators::math::set_constant(*dev_ctx, grad_var, 1.0);
}

void BasicEngine::CheckBackwardInputs(OpBase* op) {
  for (auto& pair : op->GetInsMap()) {
    for (auto& var : pair.second) {
      if (var && IsGrad(var.get())) {
        // if grad var has OverridedStopGradient skip this Op
        if (!var->GradGenerated()) {
          VLOG(6) << "Set ungenerated Grad: " << var->Name() << " as zero";
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(op->place());
          auto* tensor = var->MutableVar()->GetMutable<framework::LoDTensor>();
          tensor->mutable_data(op->place(), var->DataType());
          operators::math::set_constant(*dev_ctx, tensor, 0.0);
        } else {
          continue;
        }
      }
X
xiexionghang 已提交
99 100
    }
  }
101
}
X
xiexionghang 已提交
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void BasicEngine::SetBackwardOutputs(paddle::imperative::OpBase* op) {
  for (auto& pair : op->GetOutsMap()) {
    for (auto& var : pair.second) {
      if (var) {
        // Set Backward outputs's generate_grad as true
        var->SetGradGenerated(true);
        VLOG(6) << "Set backward output: " << var->Name()
                << "'s SetGeneratedGrad as True";
      }
    }
  }
}
void BasicEngine::PrepareGradAccumulators(OpBase* op) {
  for (const auto& pair : op->GetOutsMap()) {
    for (const auto& var : pair.second) {
      if (!var) continue;

      auto& accumulator = accumulators_[var.get()];
      if (!accumulator) {
        if (backward_strategy_.sorted_sum_gradient_) {
          accumulator.reset(new SortedGradientAccumulator(var.get()));
        } else {
          accumulator.reset(new EagerGradientAccumulator(var.get()));
        }
      }

      accumulator->IncreaseRefCnt();
X
xiexionghang 已提交
130

131 132 133 134
      VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
              << "with reference count " << accumulator->RefCnt();
    }
  }
X
xiexionghang 已提交
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(op_deps_.empty(), true, "Op deps must be initialized here");
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    "Accumulators must be initialized here");

  std::queue<OpBase*> q;
  std::unordered_set<OpBase*> visited;
  for (const auto& init_op : init_ops_) {
    q.push(init_op);
    visited.insert(init_op);
  }

  while (!q.empty()) {
    auto* cur_op = q.front();
    q.pop();
    VLOG(3) << "Checking grads of op " << cur_op->Type();

    CheckBackwardInputs(cur_op);

    SetBackwardOutputs(cur_op);

    PrepareGradAccumulators(cur_op);

    auto& grad_pending_ops = cur_op->GradPendingOps();
    for (auto* grad_pending_op : grad_pending_ops) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_op);
      ++op_deps_[grad_pending_op];
      if (visited.count(grad_pending_op) == 0) {
        visited.insert(grad_pending_op);
        q.push(grad_pending_op);
      }
    }
  }
}

void BasicEngine::SumGradient(OpBase* op, std::shared_ptr<VarBase> src,
                              VarBase* dst) {
  auto iter = accumulators_.find(dst);
  PADDLE_ENFORCE_EQ(iter != accumulators_.end(), true,
                    "Cannot find gradient of variable %s", dst->Name());
  iter->second->Add(std::move(src), op->id());
}
void BasicEngine::Execute() {
  PrepareDeps();
  // Start execute Computation graph
  std::queue<OpBase*> q;
  for (const auto& init_op : init_ops_) {
    q.push(init_op);
  }
  while (!q.empty()) {
    OpBase* cur_op = q.front();
    q.pop();

    // Step 1: Run Backward
    auto& bwd_ins = cur_op->GetInsMap();
    auto& bwd_outs = cur_op->GetOutsMap();

    NameVarBaseMap tmp_outs;
    // A var may be coresponding to several grad var in one op
    std::unordered_map<VarBase*, std::vector<std::shared_ptr<VarBase>>> var_map;
    size_t counter = 0;
    for (auto& bwd_out : bwd_outs) {
      auto& tmp_var_list = tmp_outs[bwd_out.first];
      tmp_var_list.reserve(bwd_out.second.size());
      for (auto& var : bwd_out.second) {
        auto tmp_var = std::make_shared<VarBase>(
            false, "Gtmp@" + std::to_string(counter++));  // Do not need grad
        tmp_var_list.emplace_back(tmp_var);
        if (var) {
          var_map[var.get()].emplace_back(std::move(tmp_var));
          var->ClearGradOps();
        }
      }
    }

    VLOG(3) << "Start to execute grad op " << cur_op->Type();
    RunOp(cur_op, bwd_ins, tmp_outs, cur_op->place());
    // Step 2: Sum Gradient
    {
      platform::RecordEvent record_event("merge_grads");
      for (auto& var_pair : var_map) {
        auto* dst_var = var_pair.first;
        if (dst_var == nullptr) continue;
        for (auto& src_var : var_pair.second) {
          VLOG(3) << "Sum gradient of variable " << dst_var->Name()
                  << " after op " << cur_op->Type();
          SumGradient(cur_op, std::move(src_var), dst_var);
        }
      }
    }

    // Step 3: Collect ready ops
    for (auto* grad_pending_op : cur_op->GradPendingOps()) {
      PADDLE_ENFORCE_NOT_NULL(grad_pending_op);
      auto iter = op_deps_.find(grad_pending_op);
      if (iter == op_deps_.end()) {
        continue;
      }

      VLOG(3) << "Found grad_pending op of " << cur_op->Type();
      // An Op is ready to go while its deps comes to zero

      if (--(iter->second) == 0) {
        q.push(grad_pending_op);
        VLOG(3) << "Push grad_pending op " << grad_pending_op->Type()
                << " into queue";
      }
    }

    // Step 4: Delete op to collect unused variables
    VLOG(3) << "Remove op after op " << cur_op->Type() << " runs";
    RemoveOp(cur_op);
  }
  VLOG(3) << "Clean properties of BasicEngine";
  CleanEngine();
}
X
xiexionghang 已提交
253 254
}  // namespace imperative
}  // namespace paddle