trainer.h 5.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/port.h"

namespace paddle {
namespace framework {

class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
  virtual void Initialize(const TrainerDesc& trainer_desc,
                          Dataset* data_set) = 0;
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;

 protected:
  Scope* root_scope_;
  bool debug_;
  Dataset* dataset_ptr_;
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program) {}
  virtual void Run();
  virtual void Finalize();

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
  std::vector<DataFeed*> readers_;
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
79
  std::vector<std::string> need_merge_var_names_;
X
xiexionghang 已提交
80 81 82 83 84 85 86 87 88 89
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
90 91 92 93 94
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  virtual void FinalizeDumpEnv();
  virtual void InitDumpEnv();
  virtual void DumpWork();
X
xiexionghang 已提交
95 96 97

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
98 99 100 101 102 103
  std::thread dump_thread_;
  std::shared_ptr<FILE> fp_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;

  bool need_dump_field_;
  std::string dump_fields_path_;
104
  std::string user_define_dump_filename_;
105 106 107
  std::string dump_converter_;
  std::vector<std::string> dump_fields_;
  int mpi_rank_;
X
xiexionghang 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
};

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
  void InitOtherEnv(const ProgramDesc& main_program) override {}
  void Run() override;
  void Finalize() override;

 protected:
  int section_num_;
  int pipeline_num_;
  int scope_queue_size_;
  int sync_steps_;

  SectionWorkerParameter pipeline_config_;

  // The in/output var names for each section
  std::vector<std::unique_ptr<std::vector<std::string>>> in_var_names_;
  std::vector<std::unique_ptr<std::vector<std::string>>> out_var_names_;

  // Counter for the running thread
  std::vector<std::vector<int*>> worker_count_;
  std::vector<std::vector<std::unique_ptr<std::mutex>>> worker_count_mutex_;

  // worker: [section_id][pipeline_id][thread_id]
  std::vector<std::vector<
      std::vector<std::shared_ptr<paddle::framework::DeviceWorker>>>>
      workers_;
  std::vector<std::thread> section_threads_;

  // We use scope to maintain context info, and scopes
  // will be deliverd between different sections.
  std::vector<std::vector<std::unique_ptr<ScopeQueue>>> scope_queues_;
  std::vector<Scope*> pipeline_scopes_;

  // The parameters that should be syncronized between different cards using
  // nccl all-reduce
  std::shared_ptr<std::vector<std::string>> param_need_sync_;
  std::vector<std::unique_ptr<SyncFunctor>> sync_functors_;
  std::shared_ptr<platform::NCCLContextMap> nccl_ctx_map_;

  std::vector<DataFeed*> readers_;

  void InitFirstScopeQueue(ScopeQueue* scope_queue, int pipeline_id,
                           const ProgramDesc& main_program);
  void CopyParameters(const Scope& root_scope, int pipeline_id);
  void construct_sync_functor();
};
#endif
}  // namespace framework
}  // namespace paddle