tensor.h 6.1 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cstdint>
#include <cstring>
#include <memory>
#include <typeindex>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {

namespace framework {

class LoDTensor;

class Tensor {
#ifdef PADDLE_WITH_MKLDNN

 public:
  inline mkldnn::memory::format format() const { return format_; }

  inline void set_format(const mkldnn::memory::format format) {
    format_ = format;
  }

 protected:
  /**
   * @brief the detail format of memory block which have layout as kMKLDNN
   *
   * @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
   *       nChw16c, etc. For a MKLDNN memory block, layout will be set as
   *       DataLayout::kMKLDNN meanwhile detail memory format will be kept in
   *       this field.
   */

  mkldnn::memory::format format_ = mkldnn::memory::format::format_undef;
#endif

 public:
  template <typename T, size_t D, int MajorType, typename IndexType>
  friend struct EigenTensor;

  template <typename T, int MajorType, typename IndexType>
  friend struct EigenMatrix;

  template <typename T, int MajorType, typename IndexType>
  friend struct EigenVector;

 public:
  Tensor() : type_(proto::VarType::FP32), offset_(0) {}

  explicit Tensor(const proto::VarType::Type&);

  /*! Return a pointer to mutable memory block. */
  template <typename T>
  T* data();

  /*! Return a pointer to constant memory block. */
  template <typename T>
  const T* data() const;

  inline bool IsInitialized() const;

  /**
   * @brief   Return a pointer to mutable memory block.
   * @note    If not exist, then allocation.
   */
  template <typename T>
  T* mutable_data(platform::Place place, size_t requested_size = 0);

  void* mutable_data(platform::Place place, proto::VarType::Type type,
                     size_t requested_size = 0);

  void* mutable_data(platform::Place place, size_t requested_size = 0);

  /**
   * @brief     Return a pointer to mutable memory block.
   *
   * @param[in] dims           The dimensions of the memory block.
   * @param[in] place          The place of the memory block.
   * @param[in] requested_size The size of the block in bytes.
   *
   * @note      If not exist, then allocation.
   */
  template <typename T>
  T* mutable_data(DDim dims, platform::Place place, size_t requested_size = 0);

  /*! Return the dimensions of the memory block. */
  const DDim& dims() const;

  /*! Return the numel of the memory block. */
  int64_t numel() const;

  /*! Resize the dimensions of the memory block. */
  Tensor& Resize(const DDim& dims);

  /*! The internal of two tensors share the same memory block. */
  Tensor& ShareDataWith(const Tensor& src);

  /**
   * @brief  Return a sub-tensor of the given tensor.
   *
   * @param[in] begin_idx   The index of the start row(inclusive) to slice.
   *                        The index number begins from 0.
   * @param[in] end_idx     The index of the end row(exclusive) to slice.
   *                        The index number begins from 0.
   */
  Tensor Slice(int64_t begin_idx, int64_t end_idx) const;

  platform::Place place() const {
    PADDLE_ENFORCE_NOT_NULL(
        holder_, "Tensor not initialized yet when Tensor::place() is called.");
    return holder_->place();
  }

  proto::VarType::Type type() const {
    PADDLE_ENFORCE_NOT_NULL(
        holder_, "Tensor not initialized yet when Tensor::type() is called.");
    return type_;
  }

  // memory size returns the holding memory size in byte.
  size_t memory_size() const;

  void check_memory_size() const;

  DataLayout layout() const { return layout_; }

  void set_layout(const DataLayout layout) { layout_ = layout; }

  void clear() {
    holder_ = nullptr;
    offset_ = 0;
  }

  void ShareBufferWith(const Tensor& tensor) {
    holder_ = tensor.holder_;
    offset_ = tensor.offset_;
  }

  const std::shared_ptr<memory::Allocation>& Holder() const { return holder_; }
  size_t offset() const { return offset_; }

  std::shared_ptr<memory::Allocation> MoveMemoryHolder() {
    return std::move(holder_);
  }

  void ResetHolder(std::shared_ptr<memory::Allocation> holder);

 private:
  /*! holds the memory block if allocated. */
  std::shared_ptr<memory::Allocation> holder_;
  proto::VarType::Type type_;
  /**
   * @brief points to elements dimensions.
   *
   * @note dims_ do not indicate the memory block size.
   */

  DDim dims_;

  /**
   * @brief the layout of memory block, default is NHWC.
   *
   * @note the memory allocation order, describe how weight/data is stored
   *       For example, in 4-D Tensor(rank=4), there are three commonly
   *       used layout. They are
   *            NCHW, NHWC, CHWN.
   *       N,C,H,W for respectively the batch size, the number of
   *       feature maps, the height.
   */
  // Fix me: here just change the default layout to kNCHW
  // it doesn't fix the real issue, i.e. feeder should set up tensor layout
  // according to actual input data
  DataLayout layout_ = DataLayout::kNCHW;

  /**
   * @brief   A PlaceHolder may be shared by more than one tensor.
   *
   * @note    Some of them may be slices of the others. So the offset_
   *          is introduced here to indicate the byte offset between
   *          PlaceHolder::ptr_ and where the tensor data really begins.
   */
  size_t offset_;
};

}  // namespace framework
}  // namespace paddle

#include "paddle/fluid/framework/tensor_impl.h"