prune_test.cc 6.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/prune.h"

#include <gtest/gtest.h>
18
#include <set>
X
xiexionghang 已提交
19
#include <string>
20
#include <vector>
X
xiexionghang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/operator.h"

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/program_desc.h"

namespace f = paddle::framework;

void AddOp(const std::string &type, const f::VariableNameMap &inputs,
           const f::VariableNameMap &outputs, f::AttributeMap attrs,
           paddle::framework::BlockDesc *block) {
  // insert output
  for (auto kv : outputs) {
    for (auto v : kv.second) {
      auto var = block->Var(v);
      var->SetDataType(paddle::framework::proto::VarType::FP32);
    }
  }

  // insert op
  auto op = block->AppendOp();
  op->SetType(type);
  for (auto &kv : inputs) {
    op->SetInput(kv.first, kv.second);
  }
  for (auto &kv : outputs) {
    op->SetOutput(kv.first, kv.second);
  }
  op->SetAttrMap(attrs);
}

TEST(Prune, one_operator) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);

  AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{},
        block);

  f::proto::ProgramDesc *pdesc = program.Proto();
  f::proto::ProgramDesc pruned;
63 64 65
  std::set<std::string> feed_var_names = {};
  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 0);
X
xiexionghang 已提交
66

67
  feed_var_names.insert("a");
X
xiexionghang 已提交
68
  pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true);
69 70
  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 1);
X
xiexionghang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
}

TEST(Prune, forward) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);

  AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, f::AttributeMap{},
        block);

  f::proto::ProgramDesc *pdesc = program.Proto();
87
  std::set<std::string> feed_var_names = {"a"};
X
xiexionghang 已提交
88 89 90
  for (int i = 0; i < pdesc->blocks(0).ops_size(); ++i) {
    f::proto::ProgramDesc pruned;
    pdesc->mutable_blocks(0)->mutable_ops(i)->set_is_target(true);
91 92
    f::Prune(*pdesc, feed_var_names, &pruned);
    EXPECT_EQ(pruned.blocks(0).ops_size(), i + 1);
X
xiexionghang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  }
}

TEST(Prune, multi_input_op) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);

  AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, f::AttributeMap{},
        block);
  AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}},
        f::AttributeMap{}, block);

  f::proto::ProgramDesc *pdesc = program.Proto();
  pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true);

  f::proto::ProgramDesc pruned;
113 114 115
  std::set<std::string> feed_var_names = {"a0", "a1", "a2"};
  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 4);
X
xiexionghang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

TEST(Prune, multi_output_op) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);

  AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}},
        f::AttributeMap{}, block);
  AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{},
        block);

  f::proto::ProgramDesc *pdesc = program.Proto();
  pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true);

  f::proto::ProgramDesc pruned;
133 134 135
  std::set<std::string> feed_var_names = {"a"};
  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 2);
X
xiexionghang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
}

TEST(Prune, multi_target) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);

  AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}},
        f::AttributeMap{}, block);
  AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{},
        block);
  AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{},
        block);

  f::proto::ProgramDesc *pdesc = program.Proto();
  pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true);
  pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true);

  f::proto::ProgramDesc pruned;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  std::set<std::string> feed_var_names = {"a"};
  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 3);
}

TEST(Prune, recurrrent_op) {
  f::ProgramDesc program;
  f::BlockDesc *block = program.MutableBlock(0);
  f::BlockDesc *sub_block = program.AppendBlock(*block);
  AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}},
        f::AttributeMap{}, block);

  std::vector<std::string> state_var_name(1, "y");
  AddOp("recurrent", {{"input", {"b", "c"}}}, {{"output", {"b1, c1"}}},
        {{"ex_states", state_var_name},
         {"states", state_var_name},
         {"sub_block", sub_block}},
        block);

  EXPECT_TRUE(sub_block != nullptr);
  AddOp("rnn_memory_helper", {{"input", {"x"}}}, {{"output", {"y"}}},
        f::AttributeMap{}, sub_block);

  f::proto::ProgramDesc *pdesc = program.Proto();
  pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true);

  f::proto::ProgramDesc pruned;
  std::set<std::string> feed_var_names = {"a"};

  f::Prune(*pdesc, feed_var_names, &pruned);
  EXPECT_EQ(pruned.blocks_size(), 2);
  EXPECT_EQ(pruned.blocks(0).ops_size(), 2);
  EXPECT_EQ(pruned.blocks(1).ops_size(), 1);
X
xiexionghang 已提交
187
}