parallel_executor.h 3.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/executor.h"
28
#include "paddle/fluid/framework/feed_fetch_type.h"
X
xiexionghang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace framework {

class ParallelExecutorPrivate;

using details::BuildStrategy;
using details::ExecutionStrategy;

class ParallelExecutor {
  DISABLE_COPY_AND_ASSIGN(ParallelExecutor);

 public:
  explicit ParallelExecutor(const std::vector<platform::Place> &places,
                            const std::vector<std::string> &bcast_vars,
                            const std::string &loss_var_name, Scope *scope,
                            const std::vector<Scope *> &local_scopes,
                            const ExecutionStrategy &exec_strategy,
                            const BuildStrategy &build_strategy,
                            ir::Graph *graph);

  ~ParallelExecutor();

  std::vector<Scope *> &GetLocalScopes();

  void DropLocalExeScopes();

  // This API is used to check whether DropLocalExeScopes work.
  bool NeedCreateLocalExeScope();

  /**
   * Feed tensors to local scopes. The size of tensors should be equal to the
   * size of local scopes.
   */
  void FeedTensorsIntoLocalScopes(
      const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors);

  void FeedAndSplitTensorIntoLocalScopes(
      const std::unordered_map<std::string, LoDTensor> &tensors);

78
  FeedFetchList Run(const std::vector<std::string> &fetch_tensors);
X
xiexionghang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

 private:
  // broadcast the parameters from the 0th device.
  // trainer_id the trainer index in nccl distributed training.
  void BCastParamsToDevices(const std::vector<std::string> &vars,
                            int trainer_id = 0) const;
  bool EnableParallelGraphExecution(const ir::Graph &graph,
                                    const ExecutionStrategy &exec_strategy,
                                    const BuildStrategy &build_strategy) const;

  ParallelExecutorPrivate *member_;
  std::vector<std::unique_ptr<ir::Graph>> async_graphs_;
};
}  // namespace framework
}  // namespace paddle