lod_tensor_test.cc 9.0 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <memory>
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"

namespace paddle {
namespace framework {

TEST(LoD, PrintLoDTensor) {
  LoDTensor tensor1;
  tensor1.Resize({2});
  tensor1.mutable_data<float>(platform::CPUPlace());
  tensor1.data<float>()[0] = 0.2;
  tensor1.data<float>()[1] = 0.5;
  LOG(INFO) << tensor1;

  LoDTensor tensor2;
  tensor2.Resize({2});
  tensor2.mutable_data<int64_t>(platform::CPUPlace());
  tensor2.data<int64_t>()[0] = 1;
  tensor2.data<int64_t>()[1] = 2;
  LOG(INFO) << tensor2;
}

TEST(LoD, data) {
  LoD lod{{0, 1, 2}};
  lod.push_back({0, 2, 4, 5});
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));

  auto& v = lod[0];
  for (size_t i = 0; i < v.size(); ++i) {
    EXPECT_EQ(v[i], i);
  }
}

TEST(LoD, ExpandLoD) {
  LoD lod{{0, 2}};
  LoDTensor tensor;
  tensor.set_lod(lod);
  tensor.Resize({2, 1});
  tensor.mutable_data<float>(platform::CPUPlace());
  tensor.data<float>()[0] = 0;
  tensor.data<float>()[1] = 1;

  LoD target;
  target.emplace_back(std::vector<size_t>{0, 3, 5});
  auto new_tensor = LodExpand<float>(tensor, target, 0UL, platform::CPUPlace());
  std::vector<int> result{{0, 0, 0, 1, 1}};
  for (size_t i = 0; i < 5; i++) {
    ASSERT_EQ(new_tensor.data<float>()[i], result[i]);
  }
}

TEST(LoD, GetFineGrainedLoDLength) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0, 2, 4, 5}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 10, 11}));
  lod.push_back(
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26, 29}));

  auto lod_and_offset =
      paddle::framework::GetSubLoDAndAbsoluteOffset(lod, 1, 2, 0);
  LoD lod_length = lod_and_offset.first;
  size_t start_offset = lod_and_offset.second.first;
  size_t end_offset = lod_and_offset.second.second;

  LoD expected;
  expected.push_back(std::vector<size_t>{2});
  expected.push_back(std::vector<size_t>{2, 2});
  expected.push_back(std::vector<size_t>{2, 3, 4, 2});
  EXPECT_EQ(lod_length, expected);
  EXPECT_EQ(start_offset, 15UL);
  EXPECT_EQ(end_offset, 26UL);
}

TEST(LoD, AppendLoD) {
  LoD lod_lens;
  lod_lens.push_back(std::vector<size_t>({2}));
  lod_lens.push_back(std::vector<size_t>({2, 2}));
  lod_lens.push_back(std::vector<size_t>({2, 3, 4, 2}));

  LoD origin;
  origin.push_back(std::vector<size_t>({0, 2}));
  origin.push_back(std::vector<size_t>({0, 1, 6}));
  origin.push_back(std::vector<size_t>({0, 2, 5, 7, 10, 12, 15}));

  paddle::framework::AppendLoD(&origin, lod_lens);

  LoD expected;
  expected.push_back(std::vector<size_t>({0, 2, 4}));
  expected.push_back(std::vector<size_t>({0, 1, 6, 8, 10}));
  expected.push_back(
      std::vector<size_t>({0, 2, 5, 7, 10, 12, 15, 17, 20, 24, 26}));
  EXPECT_EQ(origin, expected);
}

TEST(LoD, ToAbsOffset) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  LoD abs_lod = paddle::framework::ToAbsOffset(relative_lod);

  LoD expected;
  expected.push_back(std::vector<size_t>({0, 5}));
  expected.push_back(std::vector<size_t>({0, 2, 5}));
  expected.push_back(std::vector<size_t>({0, 2, 4, 5}));

  EXPECT_EQ(abs_lod, expected);
}

TEST(LoD, SplitLoDTensor) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));

  platform::CPUPlace place;
  LoDTensor lod_tensor;
  lod_tensor.Resize({20, 1});
  float* dst_ptr = lod_tensor.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor.numel(); ++i) {
    dst_ptr[i] = i;
  }
  lod_tensor.set_lod(lod);

  std::vector<platform::Place> places{platform::CPUPlace(),
                                      platform::CPUPlace()};
  LoD lod0;
  lod0.push_back(std::vector<size_t>({0, 2, 4}));
  lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
  LoD lod1;
  lod1.push_back(std::vector<size_t>({0, 1, 2}));
  lod1.push_back(std::vector<size_t>({0, 2, 7}));

  auto lods = lod_tensor.SplitLoDTensor(places);
  EXPECT_EQ(lods[0].lod(), lod0);
  EXPECT_EQ(lods[1].lod(), lod1);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
TEST(LoD, SplitLoDTensorWithZeroBatchSize) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0}));

  platform::CPUPlace place;
  LoDTensor lod_tensor;
  lod_tensor.Resize({0, 5});
  lod_tensor.mutable_data<float>(place);
  lod_tensor.set_lod(lod);

  std::vector<platform::Place> places{platform::CPUPlace(),
                                      platform::CPUPlace()};
  LoD lod_res;
  lod_res.push_back(std::vector<size_t>({0}));

  auto lods = lod_tensor.SplitLoDTensor(places);
  EXPECT_EQ(lods[0].lod(), lod_res);
  EXPECT_EQ(lods[1].lod(), lod_res);
}

X
xiexionghang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
TEST(LoD, MergeLoDTensor) {
  LoD lod;
  lod.push_back(std::vector<size_t>({0, 2, 4, 5, 6}));
  lod.push_back(std::vector<size_t>({0, 1, 6, 8, 13, 15, 20}));

  platform::CPUPlace place;

  LoDTensor lod_tensor0;
  LoD lod0;
  lod0.push_back(std::vector<size_t>({0, 2, 4}));
  lod0.push_back(std::vector<size_t>({0, 1, 6, 8, 13}));
  lod_tensor0.set_lod(lod0);

  lod_tensor0.Resize({13, 1});
  float* dst_ptr = lod_tensor0.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor0.numel(); ++i) {
    dst_ptr[i] = i;
  }

  LoDTensor lod_tensor1;
  LoD lod1;
  lod1.push_back(std::vector<size_t>({0, 1, 2}));
  lod1.push_back(std::vector<size_t>({0, 2, 7}));
  lod_tensor1.set_lod(lod1);
  lod_tensor1.Resize({7, 1});
  dst_ptr = lod_tensor1.mutable_data<float>(place);
  for (int i = 0; i < lod_tensor1.numel(); ++i) {
    dst_ptr[i] = i;
  }

208 209 210 211 212 213 214 215 216
  LoDTensor lod_tensor2;
  LoD lod2;
  lod2.push_back(std::vector<size_t>({0}));
  lod2.push_back(std::vector<size_t>({0}));
  lod_tensor2.set_lod(lod2);
  lod_tensor2.Resize({0});
  dst_ptr = lod_tensor2.mutable_data<float>(place);

  std::vector<const LoDTensor*> lods{&lod_tensor0, &lod_tensor1, &lod_tensor2};
X
xiexionghang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

  LoDTensor lod_tensor;
  lod_tensor.MergeLoDTensor(lods, place);
  EXPECT_EQ(lod_tensor.lod(), lod);
}

TEST(LoD, CheckLoD) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  // check compatible
  ASSERT_TRUE(CheckLoD(relative_lod));
  relative_lod[1].back()++;
  ASSERT_FALSE(CheckLoD(relative_lod));
  relative_lod[1].back()--;  // recover it

  // check empty
  LoD empty_lod;
  ASSERT_TRUE(CheckLoD(empty_lod));

  // check less than 2 offsets in a level
  LoD some_lod0;
  some_lod0.push_back(std::vector<size_t>({0}));
  ASSERT_FALSE(CheckLoD(some_lod0));

  // check with underlying tensor storage.
  ASSERT_TRUE(CheckLoD(relative_lod, 5));
  ASSERT_FALSE(CheckLoD(relative_lod, 9));

  // check whether lod is ascending-sorted (allow same items)
  ASSERT_TRUE(CheckLoD({{0, 1, 2, 3, 4, 5}}, 5));
  ASSERT_TRUE(CheckLoD({{0, 1, 3, 3, 4, 5}}, 5));
  ASSERT_FALSE(CheckLoD({{0, 1, 3, 2, 5}}, 5));
}

TEST(LoD, CheckAbsLoD) {
  LoD relative_lod;
  relative_lod.push_back(std::vector<size_t>({0, 2}));
  relative_lod.push_back(std::vector<size_t>({0, 1, 3}));
  relative_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  auto abs_lod = ToAbsOffset(relative_lod);

  ASSERT_TRUE(CheckAbsLoD(abs_lod));

  // check less than 2 offsets in a level.

  // check the last item should be compatible with tensor height.
  abs_lod.back().back()++;
  ASSERT_FALSE(CheckAbsLoD(abs_lod));
  abs_lod.back().back()--;  // restore

  // check less than 2 offsets in a lod.
  LoD abs_lod0;
  abs_lod0.push_back(std::vector<size_t>({0}));
  ASSERT_FALSE(CheckAbsLoD(abs_lod0));
}

TEST(LoD, ConvertToLengthBasedLoD) {
  LoD offset_lod;
  offset_lod.push_back(std::vector<size_t>({0, 2}));
  offset_lod.push_back(std::vector<size_t>({0, 1, 3}));
  offset_lod.push_back(std::vector<size_t>({0, 2, 4, 5}));

  LoD length_lod = ConvertToLengthBasedLoD(offset_lod);

  LoD expected;
  expected.push_back(std::vector<size_t>({2}));
  expected.push_back(std::vector<size_t>({1, 2}));
  expected.push_back(std::vector<size_t>({2, 2, 1}));

  EXPECT_EQ(length_lod, expected);
}

TEST(LoD, ConvertToOffsetBasedLoD) {
  LoD length_lod;
  length_lod.push_back(std::vector<size_t>({2}));
  length_lod.push_back(std::vector<size_t>({1, 2}));
  length_lod.push_back(std::vector<size_t>({2, 2, 1}));

  LoD offset_lod = ConvertToOffsetBasedLoD(length_lod);

  LoD expected;
  expected.push_back(std::vector<size_t>({0, 2}));
  expected.push_back(std::vector<size_t>({0, 1, 3}));
  expected.push_back(std::vector<size_t>({0, 2, 4, 5}));

  EXPECT_EQ(offset_lod, expected);
}

}  // namespace framework
}  // namespace paddle