lod_tensor.cc 12.8 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/framework/version.h"

#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"

namespace paddle {
namespace framework {

std::ostream &operator<<(std::ostream &os, const LoD &lod) {
  os << "{";
  for (auto &v : lod) {
    os << "{";
    bool is_first = true;
    for (auto &i : v) {
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
    }
    os << "}";
  }
  os << "}";

  return os;
}

std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  os << "\tlod: " << t.lod() << "\n";
  os << static_cast<Tensor>(t) << "\n";

  return os;
}

std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
                 size_t elem_end) {
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
  }
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
    for (auto &ele : res[lvl]) {
      ele -= front;
    }
  }
  return res;
}

LoD ToAbsOffset(const LoD &in) {
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
    }
  }
  return result;
}

bool operator==(const LoD &a, const LoD &b) {
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
    const auto &a_level = a[i];
    const auto &b_level = b[i];
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
}

bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be non-descending
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allowed).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
    sub_lod.emplace_back(level_lens);
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
}

void AppendLoD(LoD *lod, const LoD &lod_length) {
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
      "The lod_length should has the same size with the appended lod.");
  if (lod->empty()) {
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
  for (size_t i = 0; i < lod->size(); ++i) {
    auto &level = (*lod)[i];
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
  {  // the 1st field, uint32_t version for LoDTensor
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
  }
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
  // the 3st field, Tensor
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
}

void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
  {
    // the 1st field, unit32_t version for LoDTensor
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
  }
  {
    // the 2st field, LoD information
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
  // the 3st filed, Tensor
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
}

std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();

  std::vector<LoDTensor> results;
  results.reserve(result_size);

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  // if result_size(batch_size) is 0, just return #places.size() copys of empty
  // tensors.
  if (result_size == 0) {
    for (size_t i = 0; i < places.size(); ++i) {
      LoDTensor dst;
      dst.Resize(dims());
      dst.mutable_data(places[i], type());
      if (!lod().empty()) {
        dst.set_lod(lod());
      }
      results.emplace_back(dst);
    }
    return results;
  }

X
xiexionghang 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  int step_width = static_cast<int>(batch_size / result_size);
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }

    LoDTensor dst;
    if (lod().empty()) {
      auto src = Slice(begin, end);
      auto &dst_place = places[i];
      framework::TensorCopy(src, dst_place, &dst);
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
      auto &dst_place = places[i];
      framework::TensorCopy(src, dst_place, &dst);

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
    results.emplace_back(dst);
  }

  return results;
}

void LoDTensor::MergeLoDTensor(
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
  PADDLE_ENFORCE(!lod_tensors.empty());

  framework::DDim new_dim = lod_tensors[0]->dims();
344
  proto::VarType::Type new_type = proto::VarType::FP32;
X
xiexionghang 已提交
345
  framework::DataLayout new_layout = lod_tensors[0]->layout();
346 347 348 349 350 351 352 353 354
  for (auto *t : lod_tensors) {
    if (t->numel() && t->IsInitialized()) {
      new_dim = t->dims();
      new_type = t->type();
      new_layout = t->layout();
      break;
    }
  }

X
xiexionghang 已提交
355
  LoD new_lod = lod_tensors[0]->lod();
356

X
xiexionghang 已提交
357 358
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
359 360 361 362 363 364 365
    if (t->numel() && t->IsInitialized()) {
      PADDLE_ENFORCE_EQ(new_type, t->type());
      PADDLE_ENFORCE_EQ(new_layout, t->layout());
      PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                        framework::product(t->dims()) / t->dims()[0]);
      new_dim[0] += t->dims()[0];
    }
X
xiexionghang 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

    auto &lod = t->lod();
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
      size_t offset = sub_lod.back();
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
  }
  Resize(new_dim);
  set_layout(new_layout);
  set_lod(new_lod);
  mutable_data(dst_place, new_type);

  int begin = 0;
  for (auto *src : lod_tensors) {
    int end = begin + src->dims()[0];
385 386 387
    if (end == begin) {
      continue;
    }
X
xiexionghang 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    auto dst = Slice(begin, end);
    framework::TensorCopy(*src, dst_place, &dst);
    begin = end;
  }
}

LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

}  // namespace framework
}  // namespace paddle